Synchronicity from Synchronized Chaos

The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.

[1]  P. Candelas Vacuum polarization in Schwarzschild spacetime , 1980 .

[2]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[3]  C. Koch,et al.  How does consciousness happen? , 2007, Scientific American.

[4]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[5]  Olivier Talagrand,et al.  Assimilation of Observations, an Introduction (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[6]  Thorne,et al.  Wormholes, time machines, and the weak energy condition. , 1988, Physical review letters.

[7]  S. Childress,et al.  Topics in geophysical fluid dynamics. Atmospheric dynamics, dynamo theory, and climate dynamics. , 1987 .

[8]  K. Thorne,et al.  Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity , 1988 .

[9]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[10]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[11]  T. Palmer A granular permutation-based representation of complex numbers and quaternions: elements of a possible realistic quantum theory , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  N. Frye The Interpretation of Nature and the Psyche , 1957 .

[13]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[14]  D. Bohm A new theory of the relationship of mind and matter. , 1986 .

[15]  Peterman,et al.  High frequency synchronization of chaos. , 1995, Physical review letters.

[16]  C. von der Malsburg The what and why of binding: the modeler's perspective. , 1999, Neuron.

[17]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[18]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[19]  Hawking,et al.  Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.

[20]  G. Duane Violations of Bell's Inequality in Synchronized Hyperchaos , 2001 .

[21]  G. Duane Quantum Nonlocality From Synchronized Chaos , 2005 .

[22]  Tim N. Palmer,et al.  The Invariant Set Postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  J. Stachel A World Without Time: The Forgotten Legacy of Gödel and Einstein , 2007 .

[24]  Shinfield Park A Local Deterministic Model of Quantum Spin Measurement by , 1995 .

[25]  Thorne,et al.  Do vacuum fluctuations prevent the creation of closed timelike curves? , 1991, Physical Review D, Particles and fields.

[26]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[27]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[28]  S. Hawking,et al.  Space-Time Foam , 1979 .

[29]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[30]  Darius Plikynas,et al.  Prognostication of Human Brain EEG Signal Dynamics Using a Refined Coupled Oscillator Energy Exchange Model , 2014 .

[31]  R. Penrose,et al.  Consciousness In The Universe , 2011 .

[32]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[33]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[34]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[35]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[36]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[37]  J. Tribbia,et al.  Synchronized chaos in geophysical fluid dynamics. , 2001, Physical review letters.

[38]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[39]  Band , 1943 .

[40]  F. Takens Detecting strange attractors in turbulence , 1981 .

[41]  W. Pauli,et al.  Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band III: 1940-1949 , 1993 .

[42]  Algirdas Laukaitis,et al.  Social systems in terms of coherent individual neurodynamics: conceptual premises, experimental and simulation scope , 2014, Int. J. Gen. Syst..

[43]  Michael Ghil,et al.  A delay differential model of ENSO variability: parametric instability and the distribution of extremes , 2007, 0712.1312.

[44]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[45]  Harald Atmanspacher,et al.  Dual-aspect monism à la Pauli and Jung perforates the completeness of physics , 2012 .

[46]  Gregory S. Duane,et al.  Consensus on Long-Range Prediction by Adaptive Synchronization of Models , 2009 .

[47]  F. David Peat,et al.  Synchronicity: The Bridge Between Matter and Mind , 1987 .

[48]  Wim Wiegerinck,et al.  A multi-model ensemble method that combines imperfect models through learning , 2010 .

[49]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  G. Hooft The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible? , 2014 .

[51]  E. Ott,et al.  Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .

[52]  L. Susskind The world as a hologram , 1994, hep-th/9409089.

[53]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[54]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[55]  Gregory S. Duane,et al.  Dynamical synchronization of truth and model as an approach to data assimilation, parameter estimation, and model learning , 2007 .

[56]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[57]  Gregory S. Duane Data Assimilation as Artificial Perception and Supermodeling as Artificial Consciousness , 2013 .

[58]  Gregory S Duane,et al.  Synchronization of extended systems from internal coherence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Hong Li,et al.  Data Assimilation as Synchronization of Truth and Model: Experiments with the Three-Variable Lorenz System* , 2006 .

[60]  Cees van Leeuwen,et al.  Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Reto Knutti,et al.  The use of the multi-model ensemble in probabilistic climate projections , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[63]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[64]  Robert Vautard,et al.  On the Source of Midlatitude Low-Frequency Variability. Part I: A Statistical Approach to Persistence , 1988 .

[65]  G. Duane A "cellular neuronal" approach to optimization problems. , 2009, Chaos.

[66]  Y. Lai,et al.  Abnormal synchronization in complex clustered networks. , 2006, Physical review letters.

[67]  R. Penrose,et al.  Consciousness in the universe: a review of the 'Orch OR' theory. , 2014, Physics of life reviews.

[68]  Eli Tziperman,et al.  Controlling Spatiotemporal Chaos in a Realistic El Niño Prediction Model , 1997 .

[69]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[70]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[71]  Shuigeng Zhou,et al.  Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices , 2007 .

[72]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[73]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[74]  E. Di Mauro,et al.  How to conciliate Popper with Cartesius: comment on: "Consciousness in the universe. A review of the 'Orch OR' theory" by S. Hameroff and R. Penrose. , 2014, Physics of life reviews.

[75]  Gerard 't Hooft,et al.  Entangled quantum states in a local deterministic theory , 2009, 0908.3408.

[76]  F. Peat Infinite Potential: The Life and Times of David Bohm , 1997 .

[77]  Ljupco Kocarev,et al.  Identical synchronization, with translation invariance, implies parameter estimation , 2007 .

[78]  Ljupco Kocarev,et al.  Improved modeling by coupling imperfect models , 2012 .

[79]  Gregory S. Duane,et al.  SYNCHRONIZED CHAOS IN EXTENDED SYSTEMS AND METEOROLOGICAL TELECONNECTIONS , 1997 .

[80]  Joseph Tribbia,et al.  Weak Atlantic–Pacific Teleconnections as Synchronized Chaos , 2004 .

[81]  Ljupco Kocarev,et al.  Synchronizing Spatiotemporal Chaos of Partial Differential Equations , 1997 .

[82]  T.N.Palmer,et al.  The Invariant Set Postulate: A New Geometric Framework for the Foundations of Quantum Theory and the Role Played by Gravity , 2008, 0812.1148.

[83]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[84]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[85]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[86]  B. Hiley The Undivided Universe , 1993 .

[87]  M. Kahana The Cognitive Correlates of Human Brain Oscillations , 2006, The Journal of Neuroscience.

[88]  I. Stewart,et al.  Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .

[89]  L. Prokhorov On the Einstein-Podolsky-Rosen paradox , 2001 .

[90]  DeLiang Wang,et al.  Image Segmentation Based on Oscillatory Correlation , 1997, Neural Computation.

[91]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[92]  David Poeppel,et al.  Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing , 2014, NeuroImage.

[93]  Deliang Wang,et al.  Global competition and local cooperation in a network of neural oscillators , 1995 .

[94]  Michael Ghil,et al.  Dynamic Meteorology: Data Assimilation Methods , 1981 .

[95]  B Schechter How the Brain Gets Rhythm , 1996, Science.

[96]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[97]  L F Lago-Fernández,et al.  Fast response and temporal coherent oscillations in small-world networks. , 1999, Physical review letters.

[98]  Jeffrey B. Weiss,et al.  Synchronicity in predictive modelling: a new view of data assimilation , 2006 .

[99]  H. Stowell The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.

[100]  Steven J Schiff,et al.  Limits to the experimental detection of nonlinear synchrony. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  P. Webster,et al.  Co-occurrence of Northern and Southern Hemisphere Blocks as Partially Synchronized Chaos , 1999 .

[102]  Mark Kostuk,et al.  Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..

[103]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[104]  Thomas Appelquist Dimensional reduction in quantum gravity , 2008 .

[105]  Spiegel,et al.  On-off intermittency: A mechanism for bursting. , 1993, Physical review letters.

[106]  Walter J. Freeman,et al.  Chaos in the brain: Possible roles in biological intelligence , 1995, Int. J. Intell. Syst..

[107]  Palle Yourgrau,et al.  A World Without Time: The Forgotten Legacy of Godel and Einstein , 2004 .

[108]  N. N. Verichev,et al.  Stochastic synchronization of oscillations in dissipative systems , 1986 .