Thermal preference of Caenorhabditis elegans: a null model and empirical tests

SUMMARY The preferred body temperature of ectotherms is typically inferred from the observed distribution of body temperatures in a laboratory thermal gradient. For very small organisms, however, that observed distribution might misrepresent true thermal preferences. Tiny ectotherms have limited thermal inertia, and so their body temperature and speed of movement will vary with their position along the gradient. In order to separate the direct effects of body temperature on movement from actual preference behaviour on a thermal gradient, we generate a null model (i.e. of non-thermoregulating individuals) of the spatial distribution of ectotherms on a thermal gradient and test the model using parameter values estimated from the movement of nematodes (Caenorhabditis elegans) at fixed temperatures and on a thermal gradient. We show that the standard lab strain N2, which is widely used in thermal gradient studies, avoids high temperature but otherwise does not exhibit a clear thermal preference, whereas the Hawaiian natural isolate CB4856 shows a clear preference for cool temperatures (∼17°C). These differences are not influenced substantially by changes in the starting position of worms in the gradient, the natal temperature of individuals or the presence and physiological state of bacterial food. These results demonstrate the value of an explicit null model of thermal effects and highlight problems in the standard model of C. elegans thermotaxis, showing the value of using natural isolates for tests of complex natural behaviours.

[1]  E. Hansen,et al.  Axenic Cultivation of Caenorhabditis briggsae (Nematoda: Rhabditidae). V. Maturation on Synthetic Media.∗ , 1956, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[2]  E. Yarwood,et al.  AXENIC CULTIVATION OF CAENORHABDITIS BRIGGSAE (NEMATODA: RHABDITIDAE) WITH UNSUPPLEMENTED AND SUPPLEMENTED CHEMICALLY DEFINED MEDIA * , 1959 .

[3]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[4]  Hatim A. Zariwala,et al.  Step Response Analysis of Thermotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[5]  Thermotaxis by pseudoplasmodia of Dictyostelium discoideum. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Keith A. Christian,et al.  Evaluating Thermoregulation in Reptiles: An Appropriate Null Model , 2006, The American Naturalist.

[7]  J. Riksen,et al.  Mapping phenotypic plasticity and genotype–environment interactions affecting life-history traits in Caenorhabditis elegans , 2007, Heredity.

[8]  C. Tracy,et al.  The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal , 1981, Oecologia.

[9]  S. J. Arnold,et al.  Hot Rocks and Not-So-Hot Rocks: Retreat-Site Selection by Garter Snakes and Its Thermal Consequences , 1989 .

[10]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[11]  T. Wakabayashi,et al.  Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. , 2004, Neuroscience research.

[12]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[13]  W. W. Reynolds,et al.  Behavioral thermoregulation and the "final preferendum" paradigm , 1979 .

[14]  R. Huey,et al.  Seasonal Variation in Thermoregulatory Behavior and Body Temperature of Diurnal Kalahari Lizards , 1977 .

[15]  W. Dawson,et al.  Observations on the Thermal Relations of Western Australian Lizards , 1966 .

[16]  A Libchaber,et al.  Solitary modes of bacterial culture in a temperature gradient. , 2006, Physical review letters.

[17]  D. Riddle,et al.  Longevity in Caenorhabditis elegans reduced by mating but not gamete production , 1996, Nature.

[18]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[19]  P. Garrity,et al.  The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. , 2005, Genes & development.

[20]  D. M. Gates,et al.  A Mathematical Model for Body Temperatures of Large Reptiles: Implications for Dinosaur Ecology , 1973, The American Naturalist.

[21]  Carl Gans,et al.  Biology of the Reptilia , 1969 .

[22]  R. Huey,et al.  PHYLOGENETIC STUDIES OF COADAPTATION: PREFERRED TEMPERATURES VERSUS OPTIMAL PERFORMANCE TEMPERATURES OF LIZARDS , 1987, Evolution; international journal of organic evolution.

[23]  W. Nicholas,et al.  AXENIC CULTIVATION OF CAENORHARDITIS BRIGGSAE (NEMATODA: RHABDITIDAE) WITH CHEMICALLY UNDEFINED SUPPLEMENTS; COMPARATIVE STUDIES WITH RELATED NEMATODES * , 1959 .

[24]  Y. Ohshima,et al.  Distribution and movement of Caenorhabditis elegans on a thermal gradient , 2003, Journal of Experimental Biology.

[25]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[26]  T. Beitinger,et al.  Physiological and Ecological Correlates of Preferred Temperature in Fish , 1979 .

[27]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Porter,et al.  Seasonal Shifts in Body Temperature and Use of Microhabitats by Galapagos Land Iguanas (Conolophus Pallidus) , 1983 .

[29]  Yuji Kohara,et al.  The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans , 2000, Neuron.

[30]  H. Berg Random Walks in Biology , 2018 .

[31]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[32]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[33]  I. Mori,et al.  Inositol monophosphatase regulates localization of synaptic components and behavior in the mature nervous system of C. elegans. , 2006, Genes & development.

[34]  Robert D. Stevenson,et al.  The Relative Importance of Behavioral and Physiological Adjustments Controlling Body Temperature in Terrestrial Ectotherms , 1985, The American Naturalist.

[35]  A Biogeographic Extension of the Compression Hypothesis: Competitors in Narrow Sympatry , 1979, The American Naturalist.

[36]  J. Kingsolver,et al.  Thermoregulatory Strategies in Colias Butterflies: Thermal Stress and the Limits to Adaptation in Temporally Varying Environments , 1983, The American Naturalist.

[37]  W. Ryu,et al.  The CMK-1 CaMKI and the TAX-4 Cyclic Nucleotide-Gated Channel Regulate Thermosensory Neuron Gene Expression and Function in C. elegans , 2004, Current Biology.

[38]  J. Ewbank,et al.  Diverse Bacteria Are Pathogens of Caenorhabditis elegans , 2002, Infection and Immunity.

[39]  R. Venette,et al.  Population energetics of bacterial-feeding nematodes : respiration and metabolic rates based on CO2 production , 1995 .

[40]  L. Byerly,et al.  The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. , 1976, Developmental biology.

[41]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[42]  W. Lampert,et al.  Fitness optimization of Daphnia in a trade-off between food and temperature , 2004, Oecologia.

[43]  L. Crawshaw Temperature regulation in vertebrates. , 1980, Annual review of physiology.

[44]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[45]  R. Friedman,et al.  Significance of Skewness in Ectotherm Thermoregulation , 1979 .

[46]  C. Tracy,et al.  Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana , 1983 .

[47]  J. E. Heath Reptilian Thermoregulation: Evaluation of Field Studies , 1964, Science.

[48]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[49]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[50]  Raymond B Huey,et al.  Behavioral Drive versus Behavioral Inertia in Evolution: A Null Model Approach , 2003, The American Naturalist.

[51]  Koutarou D. Kimura,et al.  Genetic Control of Temperature Preference in the Nematode Caenorhabditis elegans , 2005, Genetics.

[52]  R. Huey,et al.  Evaluating Temperature Regulation by Field-Active Ectotherms: The Fallacy of the Inappropriate Question , 1993, The American Naturalist.

[53]  M. Lynch,et al.  Behavioral Degradation Under Mutation Accumulation in Caenorhabditis elegans , 2005, Genetics.

[54]  Koutarou D. Kimura,et al.  Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. , 2006, Genes & development.

[55]  Aravinthan D. T. Samuel,et al.  Synaptic Activity of the AFD Neuron inCaenorhabditis elegans Correlates with Thermotactic Memory , 2003, The Journal of Neuroscience.

[56]  Michael J. Angilletta,et al.  Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus , 2002 .

[57]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[58]  Damon A. Clark,et al.  Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients , 2007, The Journal of Neuroscience.

[59]  G. Blouin‐Demers An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta , 2001 .

[60]  D L Riddle,et al.  Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. , 2000, Genetics.

[61]  I. Mori,et al.  Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans , 2006, Journal of Neuroscience Methods.

[62]  Damon A. Clark,et al.  A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans , 2006, Nature Neuroscience.

[63]  J. E. Heath,et al.  Temperature regulation and diurnal activity in horned lizards , 1966 .

[64]  R. Venette,et al.  Thermal constraints to population growth of bacterial-feeding nematodes , 1997 .

[65]  Aravinthan D. T. Samuel,et al.  Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types , 2004, Current Biology.

[66]  A. Dunham,et al.  Thermally Imposed Time Constraints on the Activity of the Desert Lizard Sceloporus Merriami , 1988 .

[67]  A. F. Bennett,et al.  Thermal relations of some Australian skinks (Sauria: Scincidae) , 1986 .

[68]  Aravinthan D. T. Samuel,et al.  Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. , 2007, Journal of neurophysiology.

[69]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[70]  J. Kingsolver EVOLUTION AND COADAPTATION OF THERMOREGULATORY BEHAVIOR AND WING PIGMENTATION PATTERN IN PIERID BUTTERFLIES , 1987, Evolution; international journal of organic evolution.

[71]  Damon A. Clark,et al.  Sensorimotor control during isothermal tracking in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[72]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.