FastPCR Software for PCR Primer and Probe Design and Repeat Search

Reproducible and target-specific polymerase chain reaction (PCR) amplification relies on several interrelated factors of which primer design is central. Here, we describe new free bioinformatics software, the FastPCR which was developed, and continues to be updated, based on detailed experimental studies of PCR efficiency for the optimal design of primers and probe sequences and for repeat searching. This software forms an environment of integrated tools, which provides comprehensive facilities for designing primers for most PCR applications including multiplex and self-reporting fluorescent systems. FastPCR consists of a data editor, build commands for probe and primer design, and automation tools. The software selects the best primers with the widest range of melting temperatures, which allows designing qualified primers for all PCR tasks. The “in silico” PCR primer or probe searching includes comprehensive individual primers and primer pair analysis tests. FastPCR utilizes combinations of normal and degenerate primers for all tools. The melting temperature calculation is based on nearest neighbour thermodynamic parameters starting with multiple nucleic acid or protein sequences. It performs efficient and complete detection of various repeat types with visual display. FastPCR is able to perform repeat searches for a single sequence or for comparisons of two sequences. The program includes various bioinformatics tools for analysis of sequences with GC or AT skew, GC content, and purine-pyrimidine skew, and considers linguistic sequence complexity. It can generate random DNA sequence, make restriction analysis, and supports the clustering of sequences and consensus sequence generation, as well as sequence similarity and conservancy analyses.

[1]  M. Lynch,et al.  De novo identification of LTR retrotransposons in eukaryotic genomes , 2007, BMC Genomics.

[2]  D. Ledbetter,et al.  Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Bureau,et al.  Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K Nishigaki,et al.  Whole genome sequence-enabled prediction of sequences performed for random PCR products of Escherichia coli. , 2000, Nucleic acids research.

[5]  A. Schulman,et al.  IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques , 1999, Theoretical and Applied Genetics.

[6]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[7]  Matej Lexa,et al.  Virtual PCR , 2001, Bioinform..

[8]  D. Labuda,et al.  Alumorphs--human DNA polymorphisms detected by polymerase chain reaction using Alu-specific primers. , 1990, Genomics.

[9]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[10]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[11]  J. SantaLucia,et al.  Thermodynamics and NMR of internal G.T mismatches in DNA. , 1997, Biochemistry.

[12]  H. Ogawa,et al.  TaqMan real-time PCR quantification: conventional and modified methods. , 2005, Methods in molecular medicine.

[13]  E. Teeling,et al.  UniPrime: a workflow-based platform for improved universal primer design , 2008, Nucleic acids research.

[14]  Ofer Peleg,et al.  Large Retrotransposon Derivatives: Abundant, Conserved but Nonautonomous Retroelements of Barley and Related Genomes , 2004, Genetics.

[15]  S. Kurtz The Vmatch large scale sequence analysis software , 2003 .

[16]  Elizabeth A. Kellogg,et al.  Primaclade - a flexible tool to find conserved PCR primers across multiple species , 2005, Bioinform..

[17]  Ofer Peleg,et al.  Cassandra retrotransposons carry independently transcribed 5S RNA , 2008, Proceedings of the National Academy of Sciences.

[18]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Stoye,et al.  REPuter: the manifold applications of repeat analysis on a genomic scale. , 2001, Nucleic acids research.

[20]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[21]  Yuriy L. Orlov,et al.  Complexity: an internet resource for analysis of DNA sequence complexity , 2004, Nucleic Acids Res..

[22]  Yuan Lin,et al.  IDT SciTools: a suite for analysis and design of nucleic acid oligomers , 2008, Nucleic Acids Res..

[23]  Burkhard Morgenstern,et al.  DIALIGN2: Improvement of the segment to segment approach to multiple sequence alignment , 1999, German Conference on Bioinformatics.

[24]  R E Rhoads,et al.  Optimization of the annealing temperature for DNA amplification in vitro. , 1990, Nucleic acids research.

[25]  Matthew T. Palmer,et al.  Selection of Retroviral Reverse Transcription Primer Is Coordinated with tRNA Biogenesis , 2003, Journal of Virology.

[26]  J. SantaLucia,et al.  Thermodynamic parameters for DNA sequences with dangling ends. , 2000, Nucleic acids research.

[27]  E. Rubin,et al.  A mathematical model and a computerized simulation of PCR using complex templates. , 1996, Nucleic acids research.

[28]  J. Bennetzen,et al.  Cereal genes similar to Snf2 define a new subfamily that includes human and mouse genes , 2002, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[29]  D. A. Palmieri,et al.  SSR Locator: Tool for Simple Sequence Repeat Discovery Integrated with Primer Design and PCR Simulation , 2008, International journal of plant genomics.

[30]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[31]  T. Bureau,et al.  Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach , 2001, Theoretical and Applied Genetics.

[32]  J. Welsh,et al.  Fingerprinting genomes using PCR with arbitrary primers. , 1990, Nucleic acids research.

[33]  J. J. Hyldig-Nielsen,et al.  Self-reporting PNA/DNA primers for PCR analysis. , 2001, Genome Research.

[34]  A. Schulman,et al.  IRAP and REMAP for retrotransposon-based genotyping and fingerprinting , 2006, Nature Protocols.

[35]  S. F. Grice In the beginning": initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. , 2003 .

[36]  Srinivas Aluru,et al.  Efficient algorithms and software for detection of full-length LTR retrotransposons , 2006, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[37]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[38]  Arnaud Lefebvre,et al.  FORRepeats: detects repeats on entire chromosomes and between genomes , 2003, Bioinform..

[39]  Giorgio Valle,et al.  BIOINFORMATICS ORIGINAL PAPER Sequence analysis RAP: a new computer program for de novo identification of repeated sequences in whole genomes , 2004 .

[40]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[41]  Jakob Fredslund,et al.  Primique: automatic design of specific PCR primers for each sequence in a family , 2007, BMC Bioinformatics.

[42]  Giorgio Valle,et al.  PRIMEX: rapid identification of oligonucleotide matches in whole genomes , 2003, Bioinform..

[43]  A. Flavell,et al.  Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. , 1992, Nucleic acids research.

[44]  A. Hizi The Reverse Transcriptase of the Tf1 Retrotransposon Has a Specific Novel Activity for Generating the RNA Self-Primer That Is Functional in cDNA Synthesis , 2008, Journal of Virology.

[45]  J. Casacuberta,et al.  Genome-Wide Analysis of the “Cut-and-Paste” Transposons of Grapevine , 2008, PloS one.

[46]  Eugene W. Myers,et al.  PILER: identification and classification of genomic repeats , 2005, ISMB.

[47]  Yulei Zhang,et al.  Information theory-based algorithm for in silico prediction of PCR products with whole genomic sequences as templates , 2005, BMC Bioinformatics.

[48]  P. Ikonomi,et al.  Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. , 2002, Nucleic acids research.

[49]  S. Wessler,et al.  Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. , 1994, The Plant cell.

[50]  C. Ehresmann,et al.  tRNAs as primer of reverse transcriptases. , 1995, Biochimie.

[51]  John F. McDonald,et al.  LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..

[52]  Xiaohan Yang,et al.  Recent developments in primer design for DNA polymorphism and mRNA profiling in higher plants , 2006, Plant Methods.

[53]  Xi Li,et al.  SSRPrimer and SSR Taxonomy Tree: Biome SSR discovery , 2006, Nucleic Acids Res..

[54]  N. Sugimoto,et al.  Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. , 1996, Nucleic acids research.

[55]  J. Mak,et al.  Primer tRNAs for reverse transcription , 1997, Journal of virology.

[56]  Alexander Bolshoy,et al.  Sequence Complexity and DNA Curvature , 1999, Comput. Chem..

[57]  J. SantaLucia,et al.  Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. , 1999, Biochemistry.

[58]  Paul C. Boutros,et al.  PUNS: transcriptomic- and genomic-in silico PCR for enhanced primer design , 2004, Bioinform..

[59]  Nicolas Le Novère,et al.  MELTING, computing the melting temperature of nucleic acid duplex. , 2001, Bioinformatics.

[60]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.