Invariants of knot diagrams

We construct a new order 1 invariant for knot diagrams. We use it to determine the minimal number of Reidemeister moves needed to pass between certain pairs of knot diagrams.

[1]  J. Lagarias,et al.  The number of Reidemeister moves needed for unknotting , 1998, math/9807012.

[2]  M. Polyak Invariants of curves and fronts via Gauss diagrams , 1998 .

[3]  T. Fiedler Gauss Diagram Invariants for Knots and Links , 2001 .

[4]  Finite Type Invariants of Classical and Virtual Knots , 1998, math/9810073.

[5]  Oleg Viro,et al.  ON THE CASSON KNOT INVARIANT , 1999 .

[6]  W. Haken Theorie der Normalflächen , 1961 .

[7]  Victor Pavlovich Maslov,et al.  Advances in Soviet mathematics , 1990 .

[8]  Ronald C. Read,et al.  The knot book: An elementary introduction to the mathematical theory of knots , 1997, Complex..

[9]  V. Arnold Plane curves, their invariants, Perestroikas, and classifications , 1994 .

[10]  Olof-Petter OEstlund Invariants of knot diagrams and relations among Reidemeister moves , 2000 .

[11]  C. Adams Tales of Topology. (Book Reviews: The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots.) , 1994 .

[12]  Tobias J. Hagge Every Reidemeister move is needed for each knot type , 2004, math/0404145.

[13]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .

[14]  J. W. Alexander,et al.  On Types of Knotted Curves , 1926 .

[15]  Joel Hass,et al.  Algorithms for recognizing knots and 3-manifolds , 1998 .

[16]  Bemerkungen zur knotentheorie , 1934 .

[17]  Bruce Trace,et al.  On the Reidemeister moves of a classical knot , 1983 .

[18]  C. Hayashi,et al.  A LOWER BOUND FOR THE NUMBER OF REIDEMEISTER MOVES FOR UNKNOTTING , 2006 .

[19]  Vladimir Retakh,et al.  The Arnold-Gelfand mathematical seminars : [geometry and singularity theory] , 1997 .

[20]  Sergei Chmutov,et al.  Explicit formulas for Arnold’s generic curve invariants , 1997 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Mohamed Elhamdadi,et al.  A lower bound for the number of Reidemeister moves of type III , 2005, math/0501490.

[23]  K. Reidemeister,et al.  Knoten und Gruppen , 1927 .

[24]  G. Budworth The Knot Book , 1983 .

[25]  On Knots , 1990, Acta Applicandae Mathematicae.

[26]  Oleg Viro,et al.  Gauss Diagram Formulas for Vassiliev Invariants , 1994 .