Nonlinear Periodic Optimal Control: A Pseudospectral Fourier Approach

Abstract A pseudospectral method for generating optimal trajectories of the class of periodic optimal control problems is proposed. The method consists of representing the solution of the periodic optimal control problem by an mth degree trigonometric interpolating polynomial, using Fourier nodes as grid points, and then discretizing the problem using the trapezoidal rule as the quadrature formula for smoothly differentiable periodic functions. The periodic optimal control problem is thereby transformed into an algebraic nonlinear programming problem. Due to its dynamic nature, the pseudospectral Fourier approach avoids many of the numerical difficulties typically encountered in solving standard periodic optimal control problems. An illustrative example is provided to demonstrate the applicability of the proposed method.

[1]  Jason L. Speyer,et al.  A second variational theory for optimal periodic processes , 1984 .

[2]  Dennis S. Bernstein,et al.  Optimal periodic control: The π test revisited , 1980 .

[3]  C. Maffezzoni,et al.  Second-variation methods in periodic optimization , 1974 .

[4]  Jason L. Speyer,et al.  Periodic Optimal Hypersonic Scramjet Cruise , 2007 .

[5]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[6]  Jason Speyer,et al.  An asymptotic expansion for an optimal relaxation oscillator , 1986, 1986 25th IEEE Conference on Decision and Control.

[7]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[8]  J. L. Speyer,et al.  Solution of a periodic optimal control problem by asymptotic series , 1987 .

[9]  S. Rinaldi,et al.  Status of periodic optimization of dynamical systems , 1974 .

[10]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[11]  Eitan Tadmor,et al.  Recovering Pointwise Values of Discontinuous Data within Spectral Accuracy , 1985 .

[12]  Sergio Bittanti,et al.  Periodic control: A frequency domain approach , 1973 .

[13]  J. Speyer Nonoptimality of the steady-state cruise for aircraft , 1976 .

[14]  T. A. Zang,et al.  Spectral Methods for Partial Differential Equations , 1984 .

[15]  Klaus Schittkowski,et al.  NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[16]  C. Maffezzoni Hamilton-Jacobi theory for periodic control problems , 1974 .

[17]  E. M. Cliff,et al.  A study of chattering cruise , 1980 .

[18]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[19]  Elmer G. Gilbert,et al.  Periodic control and the optimality of aircraft cruise , 1976 .

[20]  Gamal N. Elnagar Optimal control computation for integro-differential aerodynamic equations , 1998 .

[21]  J. Speyer,et al.  Periodic optical cruise of an atmospheric vehicle , 1985 .

[22]  Elmer Gilbert,et al.  Optimal periodic control: A general theory of necessary conditions , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[23]  Richard Askey,et al.  Mean convergence of orthogonal series and Lagrange interpolation , 1972 .