A Review of Perovskites Solar Cell Stability

[1]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[2]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[3]  Kesong Yang,et al.  First-principles studies of polar perovskite KTaO3 surfaces: structural reconstruction, charge compensation, and stability diagram. , 2018, Physical chemistry chemical physics : PCCP.

[4]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[5]  M. Kanatzidis,et al.  High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16 , 2017 .

[6]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[7]  Karl Leo,et al.  Perovskite photovoltaics: Signs of stability. , 2015, Nature nanotechnology.

[8]  N. Zhu,et al.  Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless" Toluene. , 2016, Journal of the American Chemical Society.

[9]  E. Alarousu,et al.  Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters. , 2015, ACS applied materials & interfaces.

[10]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[11]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[12]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[13]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[14]  Matthew R. Leyden,et al.  Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells , 2015 .

[15]  Y. Hao,et al.  Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement , 2016 .

[16]  Furkan H. Isikgor,et al.  Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. , 2015, Nanoscale.

[17]  Y. Hao,et al.  Elucidating the Roles of TiCl4 and PCBM Fullerene Treatment on TiO2 Electron Transporting Layer for Highly Efficient Planar Perovskite Solar Cells , 2018 .

[18]  Paul A. Basore,et al.  A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules , 2017 .

[19]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[20]  A. Jen,et al.  Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. , 2016, ACS applied materials & interfaces.

[21]  J. Lian,et al.  Electron-Transport Materials in Perovskite Solar Cells , 2018, Small Methods.

[22]  Cuiling Zhang,et al.  Thermodynamically Self‐Healing 1D–3D Hybrid Perovskite Solar Cells , 2018 .

[23]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[24]  H. Snaith,et al.  The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[25]  B. Saunders,et al.  Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells , 2014 .

[26]  Lioz Etgar,et al.  Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell , 2014 .

[27]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[28]  Jun Li,et al.  High‐Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability , 2018, Advanced Energy Materials.

[29]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[30]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[31]  L. Cinà,et al.  Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. , 2016, ChemSusChem.

[32]  Jae Joon Kim,et al.  Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell. , 2018, ACS applied materials & interfaces.

[33]  Michael Grätzel,et al.  Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye , 2005 .

[34]  Yun‐Hi Kim,et al.  Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDI‐Based Polymer as the Electron Transport Layer , 2018 .

[35]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[36]  J. Meiss,et al.  Improved bulk heterojunction organic solar cells employing C70 fullerenes , 2009 .

[37]  Emmanuel Kymakis,et al.  Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium‐Neutralized Graphene Oxide as Electron Transporting Layer , 2016 .

[38]  Wei-zhong Chen,et al.  Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[39]  F. Giordano,et al.  Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency , 2016, Advanced Energy Materials.

[40]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[41]  Xin He,et al.  An efficient solvent additive for the preparation of anion-cation-mixed hybrid and the high performance perovskite solar cells. , 2018, Journal of colloid and interface science.

[42]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[43]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[44]  Ming Li,et al.  Inorganic p-type contact materials for perovskite-based solar cells , 2015 .

[45]  Hao Gao,et al.  A halide exchange engineering for CH3NH3PbI3−xBrx perovskite solar cells with high performance and stability , 2016 .

[46]  Erik M. J. Johansson,et al.  Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. , 2013, Nanoscale.

[47]  Clifford L. Henderson,et al.  A correlation study between barrier film performance and shelf lifetime of encapsulated organic solar cells , 2012 .

[48]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[49]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[50]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[51]  Dane W. deQuilettes,et al.  Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells , 2017, Science Advances.

[52]  H. Jung,et al.  Recent progressive efforts in perovskite solar cells toward commercialization , 2018 .

[53]  Matthew R. Leyden,et al.  Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations , 2015 .

[54]  Xiaodan Hong,et al.  Recent advancements in perovskite solar cells: flexibility, stability and large scale , 2016 .

[55]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[56]  Shiliang Zhou,et al.  Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. , 2014, Chemical communications.

[57]  M. Li,et al.  PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells , 2018 .

[58]  Yiying Wu,et al.  Efficient Grain Boundary Suture by Low-Cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photoresponse. , 2018, Journal of the American Chemical Society.

[59]  Long Ye,et al.  Green‐Solvent‐Processed All‐Polymer Solar Cells Containing a Perylene Diimide‐Based Acceptor with an Efficiency over 6.5% , 2016 .

[60]  Long Ji,et al.  Perovskite Solar Cells with ZnO Electron‐Transporting Materials , 2018, Advanced materials.

[61]  Cheng Bi,et al.  Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells , 2015 .

[62]  David Cahen,et al.  Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[63]  Guangda Niu,et al.  Low-Temperature-Processed Amorphous Bi2S3 Film as an Inorganic Electron Transport Layer for Perovskite Solar Cells , 2016 .

[64]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[65]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[66]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[67]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[68]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[69]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[70]  Jong-Kwon Lee,et al.  Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency , 2016 .

[71]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[72]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[73]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[74]  Yang Yang,et al.  Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21. , 2018, Journal of the American Chemical Society.

[75]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[76]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[77]  W. Han,et al.  Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P3CT salt as hole transport layer , 2018, Materials Today Energy.

[78]  X. Gong,et al.  Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3 , 2014 .

[79]  Lixin Xiao,et al.  Solution-Processed Cu9S5 as a Hole Transport Layer for Efficient and Stable Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[80]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[81]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[82]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[83]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[84]  Yang Yang,et al.  2D perovskite stabilized phase-pure formamidinium perovskite solar cells , 2018, Nature Communications.

[85]  Jinsong Huang,et al.  Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films , 2017 .

[86]  Ivan Mora-Sero,et al.  Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[87]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[88]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[89]  Wei Zhang,et al.  Tailoring Organic Cation of 2D Air‐Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells , 2017 .

[90]  P. Fang,et al.  Passivated Perovskite Crystallization via g‐C3N4 for High‐Performance Solar Cells , 2018 .

[91]  Yasemin Saygili,et al.  Boosting the Efficiency of Perovskite Solar Cells with CsBr‐Modified Mesoporous TiO2 Beads as Electron‐Selective Contact , 2018 .

[92]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[93]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[94]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[95]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[96]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[97]  Michael Grätzel,et al.  Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 ' -dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II) , 2002 .

[98]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[99]  Bai‐Xue Chen,et al.  A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell. , 2017, Chemical communications.

[100]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[101]  E. Kauppinen,et al.  Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode , 2017 .

[102]  Wai Kin Chan,et al.  Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? , 2016 .

[103]  M. Nazeeruddin,et al.  Low‐Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells , 2018, Advanced Energy Materials.

[104]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[105]  Thomas M. Brown,et al.  Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability , 2015 .

[106]  B. Tang,et al.  Preparation and characterization of a layered perovskite-type organic–inorganic hybrid compound (C8NH6–CH2CH2NH3)2CuCl4 , 2006 .

[107]  J. Troughton,et al.  Enhancing the stability of organolead halide perovskite films through polymer encapsulation , 2017 .

[108]  Aram Amassian,et al.  Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[109]  Yunlong Guo,et al.  Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber. , 2015, Journal of the American Chemical Society.

[110]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[111]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[112]  S. Mhaisalkar,et al.  Nanostructuring Mixed‐Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics , 2016, Advanced materials.

[113]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[114]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[115]  Yongzhen Wu,et al.  Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells , 2017 .

[116]  Yongfang Li,et al.  Room-temperature water-vapor annealing for high-performance planar perovskite solar cells , 2016 .

[117]  T. Edvinsson,et al.  Goldschmidt’s Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH3NH3SrI3 , 2015 .

[118]  Jiantie Xu,et al.  Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. , 2018, Chemical Society reviews.

[119]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[120]  Qingfeng Dong,et al.  Composition Engineering in Doctor‐Blading of Perovskite Solar Cells , 2017 .

[121]  M. Ko,et al.  Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. , 2015, ACS applied materials & interfaces.

[122]  Y. Duan,et al.  High-performance barrier using a dual-layer inorganic/organic hybrid thin-film encapsulation for organic light-emitting diodes , 2014 .

[123]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[124]  Jae Yoo Kim The Stability Effect of Atomic Layer Deposition (ALD) of Al2O3 on CH3NH3PbI3 Perovskite Solar Cell Fabricated by Vapor Deposition , 2017 .

[125]  Kesong Yang,et al.  First-Principles Hybrid Functional Study of the Organic–Inorganic Perovskites CH3NH3SnBr3 and CH3NH3SnI3 , 2014 .

[126]  Thomas Bein,et al.  A Long-Term View on Perovskite Optoelectronics. , 2016, Accounts of chemical research.

[127]  Shuming Yang,et al.  Tunability of the Band Energetics of Nanostructured SrTiO3 Electrodes for Dye-Sensitized Solar Cells , 2010 .

[128]  S. Mali,et al.  Bio-inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[129]  Jun Zhang,et al.  Investigation of UV aging influences on the crystallization of ethylene-vinyl acetate copolymer via successive self-nucleation and annealing treatment , 2010 .

[130]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[131]  Y. Duan,et al.  Effect of Various Oxidants on Reaction Mechanisms, Self‐Limiting Natures and Structural Characteristics of Al2O3 Films Grown by Atomic Layer Deposition , 2018 .

[132]  Yong-Wei Zhang,et al.  Highly Stable New Organic-Inorganic Hybrid 3D Perovskite CH3NH3PdI3 and 2D Perovskite (CH3NH3)3Pd2I7: DFT Analysis, Synthesis, Structure, Transition Behavior, and Physical Properties. , 2018, The journal of physical chemistry letters.

[133]  Ning Wang,et al.  Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells , 2015 .

[134]  Han‐Ik Joh,et al.  Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and stable planar solar cells with module-scales , 2016 .

[135]  Yang Liu,et al.  Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 , 2015 .

[136]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[137]  A. Grimsdale,et al.  Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design? , 2017 .

[138]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[139]  Y. Hao,et al.  Improving Electron Extraction Ability and Device Stability of Perovskite Solar Cells Using a Compatible PCBM/AZO Electron Transporting Bilayer , 2018, Nanomaterials.

[140]  W. Xiao,et al.  Fabrication of tunable [Al2O3:Alucone] thin-film encapsulations for top-emitting organic light-emitting diodes with high performance optical and barrier properties , 2014 .

[141]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[142]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[143]  Song Jin,et al.  Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. , 2016, Nano letters.

[144]  Yongzhen Wu,et al.  Enhanced Stability of Perovskite Solar Cells through Corrosion‐Free Pyridine Derivatives in Hole‐Transporting Materials , 2016, Advanced materials.

[145]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[146]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[147]  J. Baumberg,et al.  Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells , 2009 .

[148]  Yiwang Chen,et al.  Recent Progress on the Long‐Term Stability of Perovskite Solar Cells , 2018, Advanced science.

[149]  Donghwa Lee,et al.  High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure , 2015 .

[150]  Hongwei Zhu,et al.  A study of ZnO:B films for thin film silicon solar cells , 2012 .

[151]  M. Grätzel,et al.  Room‐Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low‐Cost Solar Cells , 2017, Advanced materials.

[152]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[153]  V. L. Kozhevnikov,et al.  Improved structural stability, electron transport and defect formation in PrBaCo2–Al O6–δ , 2018, Journal of Alloys and Compounds.

[154]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[155]  Wei Huang,et al.  Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. , 2017, Angewandte Chemie.

[156]  G. Boschloo,et al.  High Temperature‐Stable Perovskite Solar Cell Based on Low‐Cost Carbon Nanotube Hole Contact , 2017, Advanced materials.

[157]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[158]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[159]  C. Wenzel,et al.  Thin tantalum silicon oxygen/tantalum silicon nitrogen films as high-efficiency humidity diffusion barriers for solar cell encapsulation , 2006 .

[160]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[161]  H. Han,et al.  A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability , 2017 .

[162]  Rui Wang,et al.  Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells , 2018, Joule.

[163]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[164]  T. Hayat,et al.  The influence of perovskite layer and hole transport material on the temperature stability about perovskite solar cells , 2018 .

[165]  Sujuan Wu,et al.  Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers , 2018 .

[166]  Yang Zhang,et al.  Electrical characterization of TiO2/CH3NH3PbI3 heterojunction solar cells , 2014 .

[167]  Defne Apul,et al.  Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis , 2015 .

[168]  Yifan Zheng,et al.  A Cytop Insulating Tunneling Layer for Efficient Perovskite Solar Cells , 2017 .

[169]  Mohamed Latreche,et al.  Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition , 1998 .

[170]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[171]  Michael Saliba,et al.  From Exceptional Properties to Stability Challenges of Perovskite Solar Cells. , 2018, Small.

[172]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[173]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[174]  M. Mehran,et al.  Current status of electron transport layers in perovskite solar cells: materials and properties , 2017 .

[175]  Jong Min Kim,et al.  Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells , 2018, Applied Surface Science.

[176]  Matthew J. Carnie,et al.  Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells , 2018, Advanced Energy Materials.

[177]  Yuanjie Li,et al.  Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrode-Based Flexible Perovskite Solar Cells and the Suppression Method , 2018, Solar RRL.

[178]  Jongmin Choi,et al.  Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%) , 2017 .

[179]  Nam-Gyu Park,et al.  Perovskite Solar Cells with Inorganic Electron‐ and Hole‐Transport Layers Exhibiting Long‐Term (≈500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air , 2018, Advanced materials.

[180]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[181]  L. Echegoyen,et al.  Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells , 2018 .

[182]  J. Ni,et al.  Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method , 2017 .

[183]  Tao Wang,et al.  Recent progress and challenges of organometal halide perovskite solar cells , 2016, Reports on progress in physics. Physical Society.

[184]  T. Park,et al.  Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells , 2018, Advanced Energy Materials.

[185]  Nripan Mathews,et al.  High efficiency electrospun TiO₂ nanofiber based hybrid organic-inorganic perovskite solar cell. , 2014, Nanoscale.

[186]  T. Miyasaka,et al.  Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells , 2015 .

[187]  Hyun Suk Jung,et al.  Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. , 2014, Nanoscale.

[188]  Jihuai Wu,et al.  Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. , 2018, Chemical communications.

[189]  Bert Conings,et al.  An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates , 2015 .

[190]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[191]  V. Zardetto,et al.  Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells , 2018, ACS applied materials & interfaces.

[192]  F. Krebs,et al.  Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules , 2012 .

[193]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[194]  Olivier Durand,et al.  Light-induced lattice expansion leads to high-efficiency perovskite solar cells , 2018, Science.

[195]  Christoph Wolf,et al.  Improving the Stability of Metal Halide Perovskite Materials and Light‐Emitting Diodes , 2018, Advanced materials.

[196]  Konrad Wojciechowski,et al.  Efficient and Air‐Stable Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells with n‐Doped Organic Electron Extraction Layers , 2017, Advanced materials.

[197]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[198]  P. Barboux,et al.  Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid‐State Perovskite‐Sensitized Solar Cells , 2014 .

[199]  A. Jen,et al.  Highly crystalline Zn2SnO4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells , 2016 .

[200]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[201]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[202]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[203]  Zhigang Zang,et al.  Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. , 2017, ACS applied materials & interfaces.

[204]  Jinsong Huang,et al.  The Functions of Fullerenes in Hybrid Perovskite Solar Cells , 2017 .

[205]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[206]  Nan Wang,et al.  A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions , 2015 .

[207]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[208]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[209]  T. Hayat,et al.  The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasi‐2D Perovskite Materials in Moist Condition , 2018 .

[210]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[211]  X. Ren,et al.  Two‐Inch‐Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization , 2015, Advanced materials.

[212]  Michael Köhl,et al.  Degradation of the encapsulant polymer in outdoor weathered photovoltaic modules: Spatially resolved inspection of EVA ageing by fluorescence and correlation to electroluminescence , 2012 .

[213]  Liduo Wang,et al.  Aquointermediate Assisted Highly Orientated Perovskite Thin Films toward Thermally Stable and Efficient Solar Cells , 2017 .

[214]  Haiying Zheng,et al.  Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer , 2017 .

[215]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[216]  Shuzi Hayase,et al.  Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 Layers , 2014 .

[217]  Jian Shi,et al.  Discovering lead-free perovskite solar materials with a split-anion approach. , 2016, Nanoscale.

[218]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[219]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[220]  Rachel C. Kurchin,et al.  High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells. , 2017, ACS nano.

[221]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[222]  U. Bach,et al.  4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability , 2018, ACS Energy Letters.

[223]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[224]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[225]  Yu Cheng,et al.  Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications , 2015, Scientific Reports.

[226]  Steve Albrecht,et al.  How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures , 2018, Chemistry of Materials.

[227]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[228]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[229]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[230]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[231]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[232]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[233]  Yuan Li,et al.  Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer , 2017 .

[234]  Qiang Luo,et al.  Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[235]  Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions , 2010, 1007.0099.

[236]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[237]  F. Giustino,et al.  Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.

[238]  Jin Young Kim,et al.  Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. , 2017, ChemSusChem.

[239]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[240]  Mingkui Wang,et al.  Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells , 2016 .

[241]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[242]  Tianyu Meng,et al.  Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer , 2016 .

[243]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[244]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[245]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[246]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[247]  A. Hinsch,et al.  High Photovoltage of 1 V on a Steady-State Certified Hole Transport Layer-Free Perovskite Solar Cell by a Molten-Salt Approach , 2018 .

[248]  U. Würfel,et al.  In Situ Formation of MoO3 in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells , 2013 .

[249]  H. Tao,et al.  Perovskite solar cell with an efficient TiO₂ compact film. , 2014, ACS applied materials & interfaces.

[250]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[251]  T. Hayat,et al.  Acquiring High-Performance and Stable Mixed-Dimensional Perovskite Solar Cells by Using a Transition-Metal-Substituted Pb Precursor. , 2018, ChemSusChem.

[252]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[253]  Dong Hoe Kim,et al.  Extrinsic ion migration in perovskite solar cells , 2017 .

[254]  Michael Grätzel,et al.  Charge collection and pore filling in solid-state dye-sensitized solar cells , 2008, Nanotechnology.

[255]  Zhang Lan,et al.  Stable Inverted Planar Perovskite Solar Cells with Low‐Temperature‐Processed Hole‐Transport Bilayer , 2017 .

[256]  Eric S. Muckley,et al.  Dynamic Impact of Electrode Materials on Interface of Single‐Crystalline Methylammonium Lead Bromide Perovskite , 2018, Advanced Materials Interfaces.

[257]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[258]  T. Bein,et al.  Recycling Perovskite Solar Cells To Avoid Lead Waste. , 2016, ACS applied materials & interfaces.

[259]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[260]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[261]  C. Grätzel,et al.  Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters , 2013 .

[262]  Haiying Zheng,et al.  Design of High-Efficiency and Environmentally Stable Mixed-Dimensional Perovskite Solar Cells Based on Cesium-Formamidinium Lead Halide Component , 2018, Chemistry of Materials.

[263]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[264]  Birinchi Bora,et al.  Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India , 2016 .

[265]  F. Rossi,et al.  A simple method to evaluate the effectiveness of encapsulation materials for perovskite solar cells , 2016 .

[266]  Sandeep Kumar Pathak,et al.  Analysing the Prospects of Perovskite Solar Cells within the Purview of Recent Scientific Advancements , 2018, Crystals.

[267]  S. Tretiak,et al.  Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites , 2017, Science.

[268]  Hyun Suk Jung,et al.  Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film , 2014 .

[269]  J. Xiong,et al.  Mesoporous NiO nanosheet network as efficient hole transporting layer for stable inverted perovskite solar cells , 2018, Materials Letters.

[270]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[271]  Shibo Wang,et al.  Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells , 2017 .

[272]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[273]  Wei Huang,et al.  Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches , 2016 .

[274]  I. Ciofini,et al.  Design of dendritic core carbazole-based hole transporting materials for efficient and stable hybrid perovskite solar cells , 2018, Organic Electronics.

[275]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[276]  C. Yuan,et al.  A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J–V curves , 2015 .

[277]  Y. Qi,et al.  Recent Advances in Spiro‐MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic Halide Perovskite Solar Cells , 2018 .

[278]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.

[279]  Jiang Wang,et al.  A new thermal-stable truxene-based hole-transporting material for perovskite solar cells , 2016 .

[280]  Laura M. Herz,et al.  High irradiance performance of metal halide perovskites for concentrator photovoltaics , 2018, Nature Energy.

[281]  M. Loi,et al.  N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability , 2016 .

[282]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[283]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[284]  P. Kamat,et al.  Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions , 2016 .

[285]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[286]  Longwei Yin,et al.  A fluorine-modulated bulk-phase heterojunction and tolerance factor for enhanced performance and structure stability of cesium lead halide perovskite solar cells , 2018 .

[287]  Suren A. Gevorgyan,et al.  An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules , 2011 .

[288]  T. Hayat,et al.  Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. , 2018, Physical chemistry chemical physics : PCCP.

[289]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[290]  Takayuki Kitamura,et al.  Thermal stability of dye-sensitized solar cells with current collecting grid , 2009 .

[291]  V. Ahmadi,et al.  New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[292]  Fahad A. Al-Sulaiman,et al.  Review of recent developments and persistent challenges in stability of perovskite solar cells , 2018, Renewable and Sustainable Energy Reviews.

[293]  Zhaoxin Wu,et al.  Pseudohalide‐Induced Recrystallization Engineering for CH3NH3PbI3 Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells , 2018 .

[294]  Jia Li,et al.  Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability , 2017 .

[295]  Yani Chen,et al.  2D Ruddlesden–Popper Perovskites for Optoelectronics , 2018, Advanced materials.

[296]  Jianbin Xu,et al.  Fused‐Ring Electron Acceptor ITIC‐Th: A Novel Stabilizer for Halide Perovskite Precursor Solution , 2018 .

[297]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[298]  Chen Hu,et al.  Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance , 2016 .

[299]  Eunji Kim,et al.  Enhancement of photovoltaic properties of CH3NH3PbBr3 heterojunction solar cells by modifying mesoporous TiO2 surfaces with carboxyl groups , 2015 .

[300]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[301]  M. Grätzel,et al.  Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[302]  Tae-Youl Yang,et al.  A Low‐Temperature Thin‐Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell , 2018 .

[303]  Qi Chen,et al.  Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells , 2017, Advanced materials.

[304]  Bryce S. Richards,et al.  Improvement in multi‐crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer , 2011 .

[305]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[306]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[307]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[308]  M. Loi,et al.  Highly Reproducible Sn‐Based Hybrid Perovskite Solar Cells with 9% Efficiency , 2018 .

[309]  Chang-Lyoul Lee,et al.  Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer , 2015 .

[310]  Y. Duan,et al.  Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes , 2017, Scientific Reports.

[311]  S. Mali,et al.  Perovskite solar cells: In pursuit of efficiency and stability , 2017 .

[312]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[313]  Shangfeng Yang,et al.  Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer. , 2015, ACS applied materials & interfaces.

[314]  Bernard Kippelen,et al.  Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition , 2007 .

[315]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[316]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[317]  V. Sundström,et al.  Ultrafast Electron Dynamics in Solar Energy Conversion. , 2017, Chemical reviews.

[318]  S. Hayase,et al.  Structural Stability of Iodide Perovskite: A Combined Cluster Expansion Method and First-Principles Study , 2017 .

[319]  L. Dou Emerging two-dimensional halide perovskite nanomaterials , 2017 .

[320]  Wei Chen,et al.  Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells , 2017, Nature Communications.

[321]  Gang-Young Lee,et al.  Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency. , 2017, ACS applied materials & interfaces.

[322]  Jinsong Huang,et al.  Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells , 2015 .

[323]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[324]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[325]  Liduo Wang,et al.  Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High‐Performance Perovskite Solar Cells , 2017 .

[326]  M. Li,et al.  Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. , 2016, ACS nano.

[327]  K. Jiang,et al.  Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. , 2018, ACS applied materials & interfaces.

[328]  Wei Huang,et al.  Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. , 2018, ACS applied materials & interfaces.

[329]  Jeong-Ik Lee,et al.  A Single‐Chamber System of Initiated Chemical Vapor Deposition and Atomic Layer Deposition for Fabrication of Organic/Inorganic Multilayer Films   , 2017 .

[330]  David G. Lidzey,et al.  Spray‐Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air , 2016 .

[331]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[332]  M. Quevedo-López,et al.  Enhanced reproducibility of planar perovskite solar cells by fullerene doping with silver nanoparticles , 2018, Journal of Applied Physics.

[333]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[334]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[335]  N. Park,et al.  Material and Device Stability in Perovskite Solar Cells. , 2016, ChemSusChem.

[336]  Junsheng Yu,et al.  Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. , 2018, Nanoscale.

[337]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[338]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[339]  Wenjun Zhang,et al.  p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. , 2015, Dalton transactions.

[340]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[341]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[342]  Helmut Neugebauer,et al.  A new encapsulation solution for flexible organic solar cells , 2006 .

[343]  Zhanhua Wei,et al.  In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell , 2015 .

[344]  Mohan V. Jacob,et al.  Materials and methods for encapsulation of OPV: A review , 2013 .

[345]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[346]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[347]  Angel Barranco,et al.  Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers. , 2018, ACS applied materials & interfaces.

[348]  J. Hodgkiss,et al.  High-Performance Fused Ring Electron Acceptor-Perovskite Hybrid. , 2018, Journal of the American Chemical Society.

[349]  Duan Yu,et al.  Recent progress on thin-film encapsulation technologies for organic electronic devices , 2016 .

[350]  Sandeep Kumar Pathak,et al.  Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd‐Doping of Mesostructured TiO2 , 2016 .

[351]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[352]  G. F. Alapatt,et al.  Technical and economic assessment of perovskite solar cells for large scale manufacturing , 2015 .

[353]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[354]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[355]  M. Kanatzidis,et al.  The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. , 2015, Accounts of chemical research.

[356]  Seung‐Heon Lee,et al.  Nonfullerene Electron Transporting Material Based on Naphthalene Diimide Small Molecule for Highly Stable Perovskite Solar Cells with Efficiency Exceeding 20% , 2018 .

[357]  Chun-Guey Wu,et al.  Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process , 2014 .

[358]  Cheng-Liang Liu,et al.  Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers. , 2017, ChemSusChem.

[359]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[360]  C. Reed,et al.  Discrete fulleride anions and fullerenium cations. , 2000, Chemical reviews.

[361]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[362]  Peter Chen,et al.  Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode , 2018 .

[363]  Yifan Zheng,et al.  Efficient and stable planar p-i-n perovskite solar cells by doping tungsten compound into PEDOT:PSS to facilitate perovskite crystalline , 2018, Electrochimica Acta.

[364]  Seonhee Lee,et al.  Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells , 2016, Nature Energy.

[365]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[366]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[367]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[368]  Pengfei Liu,et al.  Grain‐Boundary “Patches” by In Situ Conversion to Enhance Perovskite Solar Cells Stability , 2018, Advanced materials.

[369]  A. Jen,et al.  Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance , 2012 .

[370]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[371]  Chun-Guey Wu,et al.  Surface engineering of ZnO electron transporting layer via Al doping for high efficiency planar perovskite solar cells , 2016 .

[372]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[373]  A. Ciccioli,et al.  On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites , 2016, Scientific Reports.

[374]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[375]  T. Noda,et al.  Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability , 2018, Solar Energy.

[376]  T. Shi,et al.  Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis , 2018, Electrochimica Acta.

[377]  Y. Hao,et al.  Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells , 2016 .

[378]  Yanlin Song,et al.  Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells , 2015 .

[379]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[380]  Qing Peng,et al.  Improve the Stability of Hybrid Halide Perovskite via Atomic Layer Deposition on Activated Phenyl-C61 Butyric Acid Methyl Ester. , 2018, ACS applied materials & interfaces.

[381]  Z. Yin,et al.  Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process , 2015 .

[382]  Bei Chu,et al.  Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. , 2015, Nanoscale.

[383]  Yaoguang Rong,et al.  Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .

[384]  Y. Hao,et al.  Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes. , 2018, ACS applied materials & interfaces.

[385]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[386]  Yong Qiu,et al.  Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination , 2014 .

[387]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.