Some problems related to the study of interaction kernels: coagulation, fragmentation and diffusion in kinetic and quantum equations
暂无分享,去创建一个
[1] J. Israelachvili. Intermolecular and surface forces , 1985 .
[2] L. Diósi. Calderia-Leggett master equation and medium temperatures , 1993 .
[3] J. McLeod. On the Scalar Transport Equation , 1964 .
[4] A. Leggett,et al. Path integral approach to quantum Brownian motion , 1983 .
[5] Three eras of micellization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] George Papanicolaou,et al. Dynamic Theory of Suspensions with Brownian Effects , 1983 .
[7] Š.,et al. On self-similarity and stationary problem for fragmentation and coagulation models , 2022 .
[8] H. Müller,et al. Zur allgemeinen Theorie ser raschen Koagulation: Die Koagulation von Stäbchen- und Blättchenkolloiden; die Theorie beliebig polydisperser Systeme und der Strömungskoagulation , 1928 .
[9] J. M. BalP. The Discrete Coagulation-Fragmentation Equations: Existence, Uniqueness, and Density Conservation , 2004 .
[10] D. Whiffen. Thermodynamics , 1973, Nature.
[11] Philippe Laurençot,et al. From the discrete to the continuous coagulation–fragmentation equations , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] M. Smoluchowski. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .
[13] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[14] Oliver Penrose,et al. The Becker-Döring equations at large times and their connection with the LSW theory of coarsening , 1997 .
[15] Philippe Laurençot,et al. On coalescence equations and related models , 2004 .
[16] CoalescenceDavid J. Aldous. Stochastic Coalescence , 1998 .
[17] Nicola Bellomo,et al. MATHEMATICAL TOPICS ON THE MODELLING COMPLEX MULTICELLULAR SYSTEMS AND TUMOR IMMUNE CELLS COMPETITION , 2004 .
[18] José Alfredo Cañizo Rincón,et al. Asymptotic behaviour of solutions to the generalized Becker–Döring equations for general initial data , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] M. Sentís. Quantum theory of open systems , 2002 .
[20] I. Stewart. On the coagulation-fragmentation equation , 1990 .
[21] F. Bouchut. Smoothing Effect for the Non-linear Vlasov-Poisson-Fokker-Planck System , 1995 .
[22] M. Fowler,et al. Function Spaces , 2022 .
[23] I. W. Stewart,et al. A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels , 1989 .
[24] Jack Carr,et al. Asymptotic behavior of solutions to the coagulation-fragmentation equations. II. Weak fragmentation , 1994 .
[25] I. I. Vrabie,et al. Compactness Methods for Nonlinear Evolutions , 1995 .
[26] Thierry Goudon,et al. The Beker-Döring System and Its Lifshitz-Slyozov Limit , 2002, SIAM J. Appl. Math..
[27] M. Slemrod. The Becker-Döring Equations , 2000 .
[28] Global L1 theory and regularity for the 3D nonlinear Wigner–Poisson–Fokker–Planck system , 2004 .
[29] F. P. D. Costa,et al. Asymptotic behaviour of low density solutions to the generalized Becker-Döring equations , 1998 .
[30] Thierry,et al. Hydrodynamic Limit for the Vlasov-Navier-Stokes Equations . Part II : Fine Particles Regime coro , 2006 .
[31] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[32] J. B. McLeod,et al. ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS , 1962 .
[33] S. Mischler,et al. From the Becker–Döring to the Lifshitz–Slyozov–Wagner Equations , 2002 .
[34] J. Nieto,et al. Global solutions of the mean–field, very high temperature Caldeira–Leggett master equation , 2006 .
[35] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[36] Philippe Laurençot,et al. Global existence for the discrete diffusive coagulation-fragmentation equations in $L^1$ , 2002 .
[37] Philippe Laurençot,et al. On a Class of Continuous Coagulation-Fragmentation Equations , 2000 .
[38] L. Diósi. On High-Temperature Markovian Equation for Quantum Brownian Motion , 1993 .
[39] Pavel B Dubovskii,et al. Mathematical theory of coagulation , 1994 .
[40] O. Penrose,et al. Towards a rigorous molecular theory of metastability , 1979 .
[41] Benoît Perthame,et al. Gelation and mass conservation in coagulation-fragmentation models , 2003 .
[42] N. Dunford,et al. Linear operations on summable functions , 1940 .
[43] John L. Spouge,et al. An existence theorem for the discrete coagulation–fragmentation equations , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[44] Stéphane Mischler,et al. Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions , 2003 .
[45] A. A Lushnikov,et al. Coagulation in finite systems , 1978 .
[46] I. Lifshitz,et al. The kinetics of precipitation from supersaturated solid solutions , 1961 .
[47] Nelson Dunford. A mean ergodic theorem , 1939 .
[48] P. Meyer,et al. Probabilités et potentiel , 1966 .
[49] Felix Otto,et al. Identification of the Dilute Regime in Particle Sedimentation , 2004 .
[50] J. Carrillo,et al. Asymptotic Behaviour and Self-Similarity for the Three Dimensional Vlasov–Poisson–Fokker–Planck System , 1996 .
[51] Decoherent Histories and Quantum State Diffusion , 1994, gr-qc/9403047.
[52] M. Smoluchowski,et al. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .
[53] J. Dieudonné,et al. Sur les espaces de Köthe , 1951 .
[54] Dariusz Wrzosek,et al. Sol-gel transition in a coagulation-diffusion model , 2000 .
[55] Miguel A. Herrero,et al. A note on Smoluchowski's equations with diffusion , 2005, Appl. Math. Lett..
[56] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[57] Jack Carr,et al. The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions , 1986 .
[58] Jack Carr,et al. Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[59] S. Mischler,et al. The Continuous Coagulation-Fragmentation¶Equations with Diffusion , 2002 .
[60] P. Jabin,et al. On the rate of convergence to equilibrium in the Becker–Döring equations , 2003 .
[61] L. Erdős,et al. Fokker–Planck Equations as Scaling Limits of Reversible Quantum Systems , 2000 .
[62] Barbara Niethammer,et al. On the Evolution of Large Clusters in the Becker-Döring Model , 2003, J. Nonlinear Sci..
[63] P. Laurençot. THE DISCRETE COAGULATION EQUATIONS WITH MULTIPLE FRAGMENTATION , 2002, Proceedings of the Edinburgh Mathematical Society.
[64] Juan Soler,et al. An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach , 2004 .
[65] Michael Grabe,et al. Protein interactions and membrane geometry. , 2003, Biophysical journal.
[66] R. Becker,et al. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .
[67] Miguel Escobedo Martínez,et al. Gelation in coagulation and fragmentation models , 2002 .
[68] William R. Frensley,et al. Boundary conditions for open quantum systems driven far from equilibrium , 1990 .