Sums Involving the Hurwitz Zeta Function

We shall prove a general closed formula for integrals considered by Ramanujan, from which we derive our former results on sums involving Hurwitz zeta-function in terms not only of the derivatives of the Hurwitz zeta-function, but also of the multiple gamma function, thus covering all possible formulas in this direction. The transition from the derivatives of the Hurwitz zeta-function to the multiple gamma function and vice versa is proved to be effected essentially by the orthogonality relation of Stirling numbers.