Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength.

[1]  D. Banerjee,et al.  Challenges in alloy design: Titanium for the aerospace industry , 1981, Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences.

[2]  R. Srinivasan,et al.  The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti-15Mo-2.6Nb-3Al-0.2Si , 2009 .

[3]  H. Doi,et al.  Influence of aging heat treatment on mechanical properties of biomedical Ti–Zr based ternary alloys containing niobium , 1998, Journal of materials science. Materials in medicine.

[4]  D. Blackwood Biomaterials: Past Successes and Future Problems , 2003 .

[5]  H. Duschner,et al.  Characterization of thermal and anodic oxide layers on β- and on near-β-titanium alloys for biomedical application , 2003, International Journal of Materials Research - Zeitschrift für Metallkunde.

[6]  M. Nakajima,et al.  The microstructure dependence of fatigue behaviour in Ti15Mo5Zr3Al alloy , 1996 .

[7]  Mitsuo Niinomi,et al.  Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. , 2003, Biomaterials.

[8]  D. Miracle,et al.  Grain refinement of cast titanium alloys via trace boron addition , 2005 .

[9]  Rui Yang,et al.  Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite , 2002 .

[10]  Peter C. Collins,et al.  Direct laser deposition of in situ Ti–6Al–4V–TiB composites , 2003 .

[11]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[12]  W. Soboyejo,et al.  An Investigation of Fatigue Crack Nucleation and Growth in a Ti–6Al–4V/TiB in Situ Composite , 2004 .

[13]  Wei Chen,et al.  The elevated-temperature fatigue behavior of boron-modified Ti-6Al-4V(wt.%) castings , 2008 .

[14]  B. Raj,et al.  Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy , 2004 .

[15]  M. Niinomi,et al.  Corrosion wear fracture of new β type biomedical titanium alloys , 1999 .

[16]  Wei Chen,et al.  The 455 °C tensile and fatigue behavior of boron-modified Ti-6Al-2Sn-4Zr-2Mo-0.1Si(wt.%) , 2010 .

[17]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[18]  C. Boehlert,et al.  Tensile and fatigue evaluation of Ti–15Al–33Nb (at.%) and Ti–21Al–29Nb (at.%) alloys for biomedical applications , 2005 .

[19]  H. Toda,et al.  Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments , 2005 .

[20]  E. A. Payzant,et al.  The effect of processing on the 455 °C tensile and fatigue behavior of boron-modified Ti-6Al-4V , 2010 .

[21]  H. Rack,et al.  Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys , 2000 .

[22]  H. Fraser,et al.  Formation of equiaxed alpha in TiB reinforced Ti alloy composites , 2005 .

[23]  M. Chakraborty,et al.  Wear response of heat-treated Ti–13Zr–13Nb alloy in dry condition and simulated body fluid , 2008 .

[24]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.