Direct measurement of the energy distribution of hot electrons in silicon dioxide

The energy distribution of hot electrons in high‐field stressed amorphous silicon dioxide (SiO2) films have been measured using a vacuum emission technique. Electrons having average energies ≳2 eV and an energy relaxation length of λ≊32 A are observed at all fields studied (≳ 2 MV/cm). However, contrary to previous theoretical expectations, the majority of carriers in the distribution remains stable at all fields. The results are in agreement with other recent experiments (electroluminescence and carrier separation) which only measure the average energy of hot electrons in SiO2 and with recent Monte Carlo transport calculations which include scattering by both optical and acoustic phonon modes. Results for varying SiO2 thickness, metal gate thickness, oxide composition, and metal gate composition will be discussed.

[1]  M. Fischetti,et al.  The effect of gate metal and SiO2 thickness on the generation of donor states at the Si‐SiO2 interface , 1985 .

[2]  Thomas N. Theis,et al.  Electron heating in silicon dioxide and off‐stoichiometric silicon dioxide films , 1985 .

[3]  Massimo V. Fischetti,et al.  Monte Carlo solution to the problem of high-field electron heating in SiO2 , 1984 .

[4]  Thomas N. Theis,et al.  Electroluminescence studies in silicon dioxide films containing tiny silicon islands , 1984 .

[5]  D. Dimaria,et al.  Strong electric field heating of conduction-band electrons in SiO2 , 1984 .

[6]  Donald R. Young,et al.  Charge transport and trapping phenomena in off‐stoichiometric silicon dioxide films , 1983 .

[7]  H. Fitting,et al.  Monte‐Carlo Studies of the Electron Mobility in SiO2 , 1982 .

[8]  K. Hess Comment on "Effect of collisional broadening on Monte Carlo simulations of high-field transport in semiconductor devices" , 1981, IEEE Electron Device Letters.

[9]  K. Thornber,et al.  The effect of collisional broadening on Monte Carlo simulations of high-field transport in semiconductor devices , 1981, IEEE Electron Device Letters.

[10]  P. Solomon,et al.  Effect of forming gas anneal on Al–SiO2 internal photoemission characteristics , 1981 .

[11]  D. Dimaria,et al.  Charge trapping studies in SiO2 using high current injection from Si‐rich SiO2 films , 1980 .

[12]  Alexei A. Maradudin,et al.  Theory of electron-avalanche breakdown in solids , 1980 .

[13]  D. Dimaria,et al.  High current injection into SiO2 from Si rich SiO2 films and experimental applications , 1980 .

[14]  D. Ferry Electron transport and breakdown in SiO2 , 1979 .

[15]  N. Klein,et al.  Current runaway in insulators affected by impact ionization and recombination , 1976 .

[16]  T. H. DiStefano,et al.  Dielectric instability and breakdown in SiO2 thin films , 1976 .

[17]  N. Klein,et al.  Impact ionization in silicon dioxide at fields in the breakdown range , 1975 .

[18]  R. C. Hughes Hot electron in SiO/sub 2/ , 1975 .

[19]  J. Maserjian,et al.  Oscillations in MOS tunneling , 1975 .

[20]  B. Ridley Mechanism of electrical breakdown in SiO2 films , 1975 .

[21]  F. B. McLean,et al.  Electron-hole pair-creation energy in SiO2 , 1975 .

[22]  Thomas H. DiStefano,et al.  Impact ionization model for dielectric instability and breakdown , 1974 .

[23]  J. Olivier,et al.  Energy losses of hot electrons in a thin layer of SiO2 on Si , 1972 .

[24]  W. Lynch Calculation of electric field breakdown in quartz as determined by dielectric dispersion analysis , 1972 .

[25]  C. N. Berglund,et al.  Photoinjection into SiO2: Electron Scattering in the Image Force Potential Well , 1971 .

[26]  Richard Phillips Feynman,et al.  Velocity acquired by an electron in a finite electric field in a polar crystal , 1970 .

[27]  Helmut Kanter,et al.  Slow-Electron Mean Free Paths in Aluminum, Silver, and Gold , 1970 .

[28]  J. O'dwyer,et al.  Theory of High Field Conduction in a Dielectric , 1969 .

[29]  R. H. Graves,et al.  Determination of the Optical Constants of Uniaxial or Isotropic Metals by Measurement of Reflectance Ratios , 1968 .

[30]  C. Reinsch Smoothing by spline functions , 1967 .

[31]  R. Handy Hot Electron Energy Loss in Tunnel Cathode Structures , 1966 .

[32]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[33]  H. Fröhlich,et al.  Theory of Electrical Breakdown in Ionic Crystals , 1937 .