Small RNA expression and strain specificity in the rat

[1]  Eugene Berezikov,et al.  Repertoire and evolution of miRNA genes in four divergent nematode species. , 2009, Genome research.

[2]  Ignacio Anegon,et al.  Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases , 2009, Science.

[3]  A. Sinclair,et al.  Sexually Dimorphic MicroRNA Expression During Chicken Embryonic Gonadal Development1 , 2009, Biology of reproduction.

[4]  E. Cuppen,et al.  Limitations and possibilities of small RNA digital gene expression profiling , 2009, Nature Methods.

[5]  G. Pan,et al.  MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells , 2009, Cell.

[6]  Michael Brudno,et al.  SHRiMP: Accurate Mapping of Short Color-space Reads , 2009, PLoS Comput. Biol..

[7]  Raquel Assis,et al.  Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution , 2009, Proceedings of the National Academy of Sciences.

[8]  B. Roe,et al.  Cloning, characterization and expression analysis of porcine microRNAs , 2009, BMC Genomics.

[9]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[10]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[11]  Enrico Petretto,et al.  Genome-Wide Co-Expression Analysis in Multiple Tissues , 2008, PloS one.

[12]  E. Cuppen,et al.  Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals , 2008, BMC Genomics.

[13]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[14]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[15]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[16]  Molly Megraw,et al.  Frequency and fate of microRNA editing in human brain , 2008, Nucleic acids research.

[17]  Manolis Kellis,et al.  Conservation of small RNA pathways in platypus Material Supplemental , 2008 .

[18]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[19]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[20]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[21]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[22]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[23]  Jessica Treisman,et al.  The Conserved microRNA MiR-8 Tunes Atrophin Levels to Prevent Neurodegeneration in Drosophila , 2007, Cell.

[24]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[25]  V. Tarasov,et al.  Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest , 2007, Cell cycle.

[26]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[27]  Ravi Sachidanandam,et al.  Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control , 2007, Science.

[28]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[29]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[30]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[31]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[32]  A. Hatzigeorgiou,et al.  Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs , 2007, Science.

[33]  Edwin Cuppen,et al.  Diversity of microRNAs in human and chimpanzee brain , 2006, Nature Genetics.

[34]  Lung-Ji Chang,et al.  Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. , 2006, Journal of andrology.

[35]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[36]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[37]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[38]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[39]  Edwin Cuppen,et al.  Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis , 2006, Pharmacogenetics and genomics.

[40]  Robert Giegerich,et al.  RNAshapes: an integrated RNA analysis package based on abstract shapes. , 2006, Bioinformatics.

[41]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[42]  W. Filipowicz,et al.  RNAi: The Nuts and Bolts of the RISC Machine , 2005, Cell.

[43]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[44]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[45]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[46]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[47]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[48]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[49]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[50]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[51]  R. Hu,et al.  Production of knockout rats using ENU mutagenesis and a yeast-based screening assay , 2003, Nature Biotechnology.

[52]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[53]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[54]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[55]  H. Jacob,et al.  Functional genomics and rat models. , 1999, Genome research.

[56]  M. Spence,et al.  Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. , 1995, The Journal of clinical investigation.

[57]  T. Kurtz,et al.  The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. , 1991, Genomics.

[58]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[59]  Ewan Birney,et al.  Ensembl Genome Browser , 2010 .

[60]  Benjamin M. Wheeler,et al.  The deep evolution of metazoan microRNAs , 2009, Evolution & development.

[61]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[62]  H. Jacob,et al.  Impact of genomics on research in the rat. , 2005, Genome research.

[63]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .