Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly

SummaryAction potentials evoked by stepwise-moving visual stimuli have been recorded extracellularly from the horizontally selective movement detectors in the lobula complex of the blowflyCalliphora erythrocephala (M.).Regarding the relation between the ommatidial mosaic structure of the compound eye and the behaviour of the detector, the following experimental results are obtained:a)Maximum reactions are obtained for stimuli which move with a stepwidth equal toδϕh, whereδϕh is the effective interommatidial angle.b)When using stepwise moving single contrast borders the reaction to a moving Dark over Bright contrast border is always greater than or equal to the reaction evoked by a moving Bright over Dark contrast border.c)From experiments with spatially small stimuli in which only a few rows of adjoining ommatidia are stimulated, the conclusion is drawn that the sensitivity distribution of the detector is spatially modulated with a period which equals the interommatidial angleδϕ.d)If the spatial wavelengthλs of a square wave grating is adjusted in such a way thatδϕh<λs<2δϕh, the reaction of the detector is reversed: movement in the preferred direction results in inhibition and movement in the null direction results in excitation.

[1]  D. Stavenga The neural superposition eye and its optical demands , 1975, Journal of comparative physiology.

[2]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[3]  V. Braitenberg Periodic structures and structural gradients in the visual ganglia of the fly , 1972 .

[4]  B. Hassenstein,et al.  Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern , 1957, Zeitschrift für vergleichende Physiologie.

[5]  Hendrikus Arnoldus Klaas Mastebroek,et al.  Stochastic structure of neural activity in the visual system of the blowfly , 1974 .

[6]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[7]  Gilbert D. McCann,et al.  Spectral and Polarization Sensitivity of the Dipteran Visual System , 1972, The Journal of general physiology.

[8]  O. Trujillo-Cenóz,et al.  The Structural Organization of the Compound Eye in Insects , 1972 .

[9]  K. Götz,et al.  Visual control of locomotion in the fruitfly Drosophila , 1973 .

[10]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[11]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[12]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[13]  G. Geiger Optomotor responses of the fly Musca domestica to transient stimuli of edges and stripes , 2004, Kybernetik.

[14]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[15]  W. H. Zaagman,et al.  Intensity and structure of visually evoked neural activity: Rivals in modelling a visual system , 1977, Vision Research.

[16]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[17]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[18]  D. Stavenga,et al.  Organization of visual axes in the compound eye of the flyMusca domestica L. and behavioural consequences , 1975, Journal of comparative physiology.