Computing Resolutions Over Finite p-Groups

A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any finite p-group is detailed. The resolutions we construct ([32]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian p-group of the same order as the group under study. Our implementations are based on the development of sophisticated algebraic data structures. Applications to calculating functional cocycles are given and the possibility of constructing interesting codes using such methods is presented.

[1]  D. Pengelley The Homotopy Type of MSU , 1982 .

[2]  L. Lambe,et al.  ON CONSTRUCTING RESOLUTIONS OVER THE POLYNOMIAL ALGEBRA , 2002 .

[3]  Emil Sköldberg,et al.  On constructing resolutions over the polynomial , 2002 .

[4]  L. Lambe,et al.  Resolution via Homological Perturbation , 1991, J. Symb. Comput..

[5]  S. A. Jennings,et al.  The structure of the group ring of a $p$-group over a modular field , 1941 .

[6]  Michio Suzuki,et al.  Finite Groups II , 1986 .

[7]  A. A. I. Perera,et al.  Codes from Cocycles , 1997, AAECC.

[8]  L. Lambe,et al.  Applications of perturbation theory to iterated fibrations , 1987 .

[9]  D. Quillen,et al.  On the associated graded ring of a group ring , 1968 .

[10]  J. Huebschmann Perturbation theory and free resolutions for nilpotent groups of class 2 , 1989 .

[11]  Kathy J. Horadam,et al.  Cocyclic Hadamard matrices and difference sets , 2000, Discret. Appl. Math..

[12]  Richard D. Jenks,et al.  AXIOM: the scientific computation system , 1992 .

[13]  K. J. Horadam,et al.  Cocyclic Development of Designs , 1993 .

[14]  V. K. A. M. Gugenheim,et al.  Perturbation Theory in Dierential Homological Algebra II , 1989 .

[15]  K. J. Horadam,et al.  Generation of Cocyclic Hadamard Matrices , 1995 .

[16]  V. K. A. M. Gugenheim,et al.  On the chain-complex of a fibration , 1972 .

[17]  L. Lambe Homological Perturbation Theory Hochschild Homology and Formal Groups , 1992 .

[18]  Jean-Pierre Serre,et al.  Lie algebras and Lie groups : 1964 lectures given at Harvard University , 1965 .

[19]  Charles Terence Clegg Wall,et al.  Resolutions for extensions of groups , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  J. May The cohomology of restricted Lie algebras and of Hopf algebras , 1965 .

[21]  A. L.,et al.  PERTURBATION THEORY IN DIFFERENTIAL HOMOLOGICAL ALGEBRA I , 2022 .

[22]  Johannes Huebschmann,et al.  Small models for chain algebras , 1991 .

[23]  L. Lambe,et al.  Next Generation Computer Algebra Systems AXIOM and the Scratchpad Concept: Applications to Research in Algebra , 1992 .

[24]  L. Lambe,et al.  Transferring Algebra Structures Up to Homology Equivalence , 2001 .

[25]  E. O'Brien,et al.  Computing 2-cocyeles for central extensions and relative difference sets , 2000 .

[26]  C. Wall,et al.  Lie Algebras And Lie Groups , 1967, The Mathematical Gazette.

[27]  Ronald Calinger,et al.  Classics of Mathematics , 1994 .

[28]  D. L. Flannery Transgression and the calculation of cocyclic matrices , 1995, Australas. J Comb..

[29]  D. Flannery,et al.  Calculation of cocyclic matrices , 1996 .

[30]  G. Ellis,et al.  Computing second cohomology of finite groups with trivial coefficients , 1999 .

[31]  W. Massey THE COHOMOLOGY OF RESTRICTED LIE ALGEBRAS AND OF HOPF ALGEBRAS 12 , 1966 .

[32]  G. Hochschild REPRESENTATIONS OF RESTRICTED LIE ALGEBRAS OF CHARACTERISTIC p , 1954 .

[33]  L. Lambe Resolutions which split off of the bar construction , 1993 .

[34]  Jean-Pierre Serre , 2001 .

[35]  S. Maclane Review: Henri Cartan and Samuel Eilenberg, Homological algebra , 1956 .

[36]  N. Jacobson Restricted Lie algebras of characteristic , 1941 .

[37]  Larry A. Lambe,et al.  A fixed point approach to homological perturbation theory , 1991 .