Visual data mining to discover knowledge patterns from Web navigational trends

Discovering web navigational trends and understanding data mining results which is useful to web designers and web-based application builders. It is also desirable to interactively investigate web access data and patterns, Visualizing the usage data in the context of the web site structure is of major importance, as it puts web access requests and their connectivity in perspective. The visualization tool we used to represent the data mining functionalities to generate new patterns. Here we present our visual data mining system, WebViz, which allows interactive investigation of web usage data within their structure context, as well as ad-hoc knowledge, by using Webwiz pattern discovery on web navigational behaviour.

[1]  Hans-Peter Kriegel,et al.  Visual classification: an interactive approach to decision tree construction , 1999, KDD '99.

[2]  B. Cheswick,et al.  The Internet mapping project , 1998 .

[3]  Nick Cercone,et al.  RuleViz: a model for visualizing knowledge discovery process , 2000, KDD '00.

[4]  Mihael Ankerst,et al.  Visual Data Mining , 2001, Encyclopedia of GIS.

[5]  Randy Goebel,et al.  WebFrame: In Pursuit of Computationally and Cognitively Efficient Web Mining , 2002, PAKDD.

[6]  Jock D. Mackinlay,et al.  Visualizing the evolution of Web ecologies , 1998, CHI.

[7]  Randy Goebel,et al.  Visualizing and discovering web navigational patterns , 2004, WebDB '04.

[8]  Nick Cercone,et al.  Interactive Construction of Decision Trees , 2001, PAKDD.

[9]  Jock D. Mackinlay,et al.  Cone Trees: animated 3D visualizations of hierarchical information , 1991, CHI.

[10]  Ed Huai-hsin Chi Improving Web Usability Through Visualization , 2002, IEEE Internet Comput..

[11]  Randy Goebel,et al.  WebKIV: visualizing structure and navigation for Web mining applications , 2003, Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

[12]  Pak Chung Wong,et al.  Guest Editor's Introduction: Visual Data Mining , 1999, IEEE Computer Graphics and Applications.

[13]  Hans-Peter Kriegel,et al.  Towards an effective cooperation of the user and the computer for classification , 2000, KDD '00.

[14]  Osmar R. Zaïane,et al.  Non-recursive Generation of Frequent K-itemsets from Frequent Pattern Tree Representations , 2003, DaWaK.

[15]  Charmain Cilliers,et al.  Visual Web Mining of Organizational Web Sites , 2006, Tenth International Conference on Information Visualisation (IV'06).

[16]  C. Lee Giles,et al.  Accessibility of information on the web , 1999, Nature.

[17]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.