Hierarchical conforming finite element methods for the biharmonic equation
暂无分享,去创建一个
[1] Peter Deuflhard,et al. Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..
[2] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[3] M. Nikolskii,et al. Approximation of Functions of Several Variables and Embedding Theorems , 1971 .
[4] A. Kufner,et al. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .
[5] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[6] Dietrich Braess,et al. A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation , 1987 .
[7] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[8] O. V. Besov,et al. Integral representations of functions and imbedding theorems , 1978 .
[9] R. Bank,et al. The hierarchical basis multigrid method , 1988 .
[10] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[11] Peter Oswald,et al. On Function Spaces Related to Finite Element Approximation Theory , 1990 .
[12] W. Dörfler. Hierarchical bases for elliptic problems , 1992 .
[13] C. Chui,et al. Bivariate C 1 Quadratic Finite Elements and Vertex Splines , 1990 .
[14] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[15] Wolfgang Dahmen,et al. Multidimensional Spline Approximation , 1980 .
[16] Susanne C. Brenner,et al. An optimal-order nonconforming multigrid method for the Biharmonic equation , 1989 .
[17] R. DeVore,et al. Free multivariate splines , 1987 .