Hierarchical conforming finite element methods for the biharmonic equation

The paper deals with hierarchical bases in spaces of conforming $C^1 $ elements in connection with the approximate solution of the biharmonic equation \[ \Delta ^2 u = f\quad {\text{in }}\Omega ,\qquad u = \frac{{\partial u}}{{\partial n}} = 0\quad {\text{on }}\partial \Omega \]on a plane polygonal domain $\Omega $. Two different composite finite elements are studied: piecewise quadratic Powell–Sabin elements and piecewise cubic elements of Clough–Tocher type.The main result are estimates for the condition numbers of the corresponding discretization matrices that show that a conjugate gradient method applied to the hierarchical discretization (the so-called hierarchical multilevel method) will yield suboptimal convergence rates in comparison with standard multigrid schemes.

[1]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[2]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[3]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[4]  A. Kufner,et al.  Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .

[5]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[6]  Dietrich Braess,et al.  A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation , 1987 .

[7]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[8]  O. V. Besov,et al.  Integral representations of functions and imbedding theorems , 1978 .

[9]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[10]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[11]  Peter Oswald,et al.  On Function Spaces Related to Finite Element Approximation Theory , 1990 .

[12]  W. Dörfler Hierarchical bases for elliptic problems , 1992 .

[13]  C. Chui,et al.  Bivariate C 1 Quadratic Finite Elements and Vertex Splines , 1990 .

[14]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[15]  Wolfgang Dahmen,et al.  Multidimensional Spline Approximation , 1980 .

[16]  Susanne C. Brenner,et al.  An optimal-order nonconforming multigrid method for the Biharmonic equation , 1989 .

[17]  R. DeVore,et al.  Free multivariate splines , 1987 .