An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing

Surface plasmon excitation provides stronger enhancement of the fluorescence intensity and better sensitivity than other sensing approaches but requires optimal positioning of a prism to ensure optimum output of the incident light. Here we describe a simple, highly sensitive optical sensing system combining surface plasmon excitation and fluorescence to address this limitation. V-shaped fluidic channels are employed to mimic the functions of a prism, sensing plate, and flow channel in a single setup. Superior performance is demonstrated for different biomolecular recognition reactions on a self-assembled monolayer, and the sensitivity reaches 100 fM for biotin-streptavidin interactions. Using an antibody as a probe, we demonstrate the detection of intact influenza viruses at 0.2 HA units ml⁻¹ levels. The convenient sensing system developed here has the advantages of being prism-free and requiring less sample (1-2 μl), making this platform suitable for use in situations requiring low sample volumes.

[1]  K. Awazu,et al.  Neu5Acα2,6Gal and Neu5Acα2,3Gal receptor specificities on influenza viruses determined by a waveguide-mode sensor. , 2013, Acta biomaterialia.

[2]  G. Gibson,et al.  Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip. , 2012, The Analyst.

[3]  N. Green Avidin. , 1975, Advances in protein chemistry.

[4]  Penmetcha K. R. Kumar,et al.  Aptamer-derived nucleic acid oligos: applications to develop nucleic acid chips to analyze proteins and small ligands. , 2005, Analytical chemistry.

[5]  Richard N. Zare,et al.  Microfluidic device for immunoassays based on surface plasmon resonance imaging. , 2008, Lab on a chip.

[6]  C. Chong,et al.  Evaluation of a rapid diagnostic test, NanoSign® Influenza A/B Antigen, for detection of the 2009 pandemic influenza A/H1N1 viruses , 2010, Virology Journal.

[7]  A. Gast,et al.  Surface Plasmon Resonance/Surface Plasmon Enhanced Fluorescence: An Optical Technique for the Detection of Multicomponent Macromolecular Adsorption at the Solid/Liquid Interface , 2002 .

[8]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[9]  Christopher C. Davis,et al.  Fluorescence enhancement by surface gratings , 2007 .

[10]  Yasuo Shinohara,et al.  Quantitative Analysis of Serum Procollagen Type I C-Terminal Propeptide by Immunoassay on Microchip , 2011, PloS one.

[11]  D. Margulies,et al.  Medication detection by a combinatorial fluorescent molecular sensor. , 2012, Angewandte Chemie.

[12]  Ronghui Wang,et al.  Hydrogel based QCM aptasensor for detection of avian influenza virus. , 2013, Biosensors & bioelectronics.

[13]  W. Knoll,et al.  The importance of the photonic mode density in bioassays based on evanescent optical waves , 2009 .

[14]  K. Gillis,et al.  Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells. , 2013, ACS chemical neuroscience.

[15]  Milan Vala,et al.  Compact surface plasmon-enhanced fluorescence biochip. , 2013, Optics express.

[16]  Penmetcha K. R. Kumar,et al.  Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV‐1 , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[17]  Molly M Stevens,et al.  Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. , 2012, Nature nanotechnology.

[18]  Erik Dujardin,et al.  Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. , 2013, Nature materials.

[19]  Wolfgang Knoll,et al.  Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review) , 2008, Biointerphases.

[20]  Quan Cheng,et al.  Recent advances in surface plasmon resonance based techniques for bioanalysis , 2007, Analytical and bioanalytical chemistry.

[21]  Y. K. Cheung,et al.  1 Supplementary Information for : Microfluidics-based diagnostics of infectious diseases in the developing world , 2011 .

[22]  I. Nikolov,et al.  Analysis of the dispersion of optical plastic materials , 2007 .

[23]  Ying-Fon Chang,et al.  Tumor targeting by an aptamer. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[25]  Byung-Chan Kim,et al.  Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[26]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[27]  W. Knoll,et al.  Surface-plasmon fluorescence spectroscopy , 2002 .

[28]  Norio Miura,et al.  Compact surface plasmon resonance (SPR) immunosensor using multichannel for simultaneous detection of small molecule compounds , 2005 .

[29]  Emi Suenaga,et al.  Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. , 2012, Biosensors & bioelectronics.

[30]  J. Tominaga,et al.  Assays for aptamer-based platforms. , 2012, Biosensors & bioelectronics.

[31]  Keiko Tawa,et al.  Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. , 2005, Biophysical journal.

[32]  T. Takayama,et al.  Bacterial Neuraminidase Rescues Influenza Virus Replication from Inhibition by a Neuraminidase Inhibitor , 2012, PloS one.