The local potential approximation in quantum gravity

A bstractWithin the context of the functional renormalization group flow of gravity, we suggest that a generic f (R) ansatz (i.e. not truncated to any specific form, polynomial or not) for the effective action plays a role analogous to the local potential approximation (LPA) in scalar field theory. In the same spirit of the LPA, we derive and study an ordinary differential equation for f (R) to be satisfied by a fixed point of the renormalization group flow. As a first step in trying to assess the existence of global solutions (i.e. true fixed point) for such equation, we investigate here the properties of its solutions by a comparison of various series expansions and numerical integrations. In particular, we study the analyticity conditions required because of the presence of fixed singularities in the equation, and we develop an expansion of the solutions for large R up to order N = 29. Studying the convergence of the fixed points of the truncated solutions with respect to N, we find a characteristic pattern for the location of the fixed points in the complex plane, with one point stemming out for its stability. Finally, we establish that if a non-Gaussian fixed point exists within the full f (R) approximation, it corresponds to an R2 theory.

[1]  One-loop F(R,P,Q) gravity in de Sitter universe , 2012, 1203.5032.

[2]  Frank Saueressig,et al.  Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.

[3]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[4]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[5]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[6]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[7]  Wu-Sheng Dai,et al.  The number of eigenstates: counting function and heat kernel , 2009, 0902.2484.

[8]  M. Rubin,et al.  Eigenvalues and degeneracies for n‐dimensional tensor spherical harmonics , 1984 .

[9]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[10]  G. Felder Renormalization group in the local potential approximation , 1987 .

[11]  G. Hooft,et al.  One loop divergencies in the theory of gravitation , 1974 .

[12]  H. Stefancic,et al.  Renormalization group scale-setting from the action—a road to modified gravity theories , 2012, 1204.1483.

[13]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[14]  M. Hindmarsh,et al.  f(R) Gravity from the renormalisation group , 2012, 1203.3957.

[15]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[16]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[17]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.

[18]  J. Vidal,et al.  Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .

[19]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[20]  T. Morris Elements of the Continuous Renormalization Group , 1998 .

[21]  D. Litim Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.

[22]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[23]  L. A. King Theories of gravity , 1973 .

[24]  A. Bonanno,et al.  Inflationary solutions in asymptotically safe f(R) theories , 2010, 1006.0192.

[25]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[26]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[27]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[28]  A. Bonanno An effective action for asymptotically safe gravity , 2012, 1203.1962.

[29]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[30]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[31]  O(N) models within the local potential approximation , 1997, hep-th/9701028.

[32]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[33]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[34]  Augusto Sagnotti,et al.  The ultraviolet behavior of Einstein gravity , 1986 .

[35]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[36]  T. Morris On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.

[37]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[38]  Peter Hasenfratz,et al.  Renormalization group study of scalar field theories , 1986 .

[39]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[40]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[41]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000 .

[42]  D. Litim,et al.  Ising exponents from the functional renormalisation group , 2010, 1009.1948.

[43]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[44]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[45]  D. Benedetti Asymptotic safety goes on shell , 2011, 1107.3110.

[46]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[47]  E. Elizalde,et al.  One-loop f(R) gravity in de Sitter universe , 2005, hep-th/0501096.

[48]  Bertrand Delamotte,et al.  An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.

[49]  Donoghue,et al.  General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.

[50]  Norman M. Dott An Introductory Review , 1962 .