The local potential approximation in quantum gravity
暂无分享,去创建一个
[1] One-loop F(R,P,Q) gravity in de Sitter universe , 2012, 1203.5032.
[2] Frank Saueressig,et al. Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.
[3] Daniel F Litim. Fixed points of quantum gravity. , 2004, Physical review letters.
[4] Frank Saueressig,et al. Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.
[5] Martin Reuter,et al. Nonperturbative evolution equation for quantum gravity , 1998 .
[6] T. Sotiriou,et al. f(R) Theories Of Gravity , 2008, 0805.1726.
[7] Wu-Sheng Dai,et al. The number of eigenstates: counting function and heat kernel , 2009, 0902.2484.
[8] M. Rubin,et al. Eigenvalues and degeneracies for n‐dimensional tensor spherical harmonics , 1984 .
[9] Roberto Percacci,et al. The running gravitational couplings , 1998 .
[10] G. Felder. Renormalization group in the local potential approximation , 1987 .
[11] G. Hooft,et al. One loop divergencies in the theory of gravitation , 1974 .
[12] H. Stefancic,et al. Renormalization group scale-setting from the action—a road to modified gravity theories , 2012, 1204.1483.
[13] Frank Saueressig,et al. On the Renormalization Group Flow of Gravity , 2007, 0712.0445.
[14] M. Hindmarsh,et al. f(R) Gravity from the renormalisation group , 2012, 1203.3957.
[15] M. Reuter,et al. Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .
[16] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[17] Astrid Eichhorn,et al. Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.
[18] J. Vidal,et al. Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .
[19] D. Litim. Optimized renormalization group flows , 2001, hep-th/0103195.
[20] T. Morris. Elements of the Continuous Renormalization Group , 1998 .
[21] D. Litim. Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.
[22] Martin Reuter,et al. Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.
[23] L. A. King. Theories of gravity , 1973 .
[24] A. Bonanno,et al. Inflationary solutions in asymptotically safe f(R) theories , 2010, 1006.0192.
[25] Holger Gies. Introduction to the Functional RG and Applications to Gauge Theories , 2006 .
[26] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[27] Christoph Rahmede,et al. ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.
[28] A. Bonanno. An effective action for asymptotically safe gravity , 2012, 1203.1962.
[29] S. Tsujikawa,et al. f(R) Theories , 2010, Living reviews in relativity.
[30] Frank Saueressig,et al. Quantum Einstein gravity , 2012, 1202.2274.
[31] O(N) models within the local potential approximation , 1997, hep-th/9701028.
[32] R. Percacci,et al. Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.
[33] Martin Reuter,et al. Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.
[34] Augusto Sagnotti,et al. The ultraviolet behavior of Einstein gravity , 1986 .
[35] C. Wetterich,et al. Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .
[36] T. Morris. On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.
[37] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[38] Peter Hasenfratz,et al. Renormalization group study of scalar field theories , 1986 .
[39] Frank Saueressig,et al. ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.
[40] S. Weinberg. Ultraviolet divergences in quantum theories of gravitation. , 1980 .
[41] C. Bervillier,et al. Exact renormalization group equations. An Introductory review , 2000 .
[42] D. Litim,et al. Ising exponents from the functional renormalisation group , 2010, 1009.1948.
[43] Jan M. Pawlowski. Aspects of the functional renormalisation group , 2007 .
[44] M. Reuter,et al. Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .
[45] D. Benedetti. Asymptotic safety goes on shell , 2011, 1107.3110.
[46] Frank Saueressig,et al. Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.
[47] E. Elizalde,et al. One-loop f(R) gravity in de Sitter universe , 2005, hep-th/0501096.
[48] Bertrand Delamotte,et al. An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.
[49] Donoghue,et al. General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.
[50] Norman M. Dott. An Introductory Review , 1962 .