Periodic behavior of the stochastic Brusselator in the mean-field limit

[1]  M. Scheutzow Some Examples of Nonlinear Diffusion Processes Having a Time-Periodic Law , 1985 .

[2]  A. Sznitman Équations de type de Boltzmann, spatialement homogènes , 1984 .

[3]  Tadahisa Funaki,et al.  A certain class of diffusion processes associated with nonlinear parabolic equations , 1984 .

[4]  K. Oelschlager A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes , 1984 .

[5]  Hiroshi Tanaka Limit Theorems for Certain Diffusion Processes with Interaction , 1984 .

[6]  D. Dawson Critical dynamics and fluctuations for a mean-field model of cooperative behavior , 1983 .

[7]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[8]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[9]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[10]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[11]  Peter J. Ponzo,et al.  Note on a model of a biochemical reaction , 1978 .

[12]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[13]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[14]  J. Tyson Some further studies of nonlinear oscillations in chemical systems , 1973 .

[15]  G. Nicolis,et al.  Chemical instabilities and sustained oscillations. , 1971, Journal of theoretical biology.

[16]  Shinzo Watanabe,et al.  On the uniqueness of solutions of stochastic difierential equations , 1971 .

[17]  N. Wax,et al.  ON CERTAIN RELAXATION OSCILLATIONS: CONFINING REGIONS, , 1965 .

[18]  P. Hartman Ordinary Differential Equations , 1965 .