QSWalk.jl: Julia package for quantum stochastic walks analysis

Abstract The paper describes QSWalk.jl package for Julia programming language, developed for the purpose of simulating the evolution of open quantum systems. The package enables the study of quantum procedures developed using stochastic quantum walks on arbitrary directed graphs. We provide a detailed description of the implemented functions, along with a number of usage examples. The package is compared with the existing software offering a similar functionality. Program summary Program Title: QSWalk.jl Program Files doi: http://dx.doi.org/10.17632/6x37kcvvrp.1 Licensing provisions: MIT Programming language: Julia Nature of problem: The package implements functions for simulating quantum stochastic walks, including local regime, global regime, and nonmoralizing global regime (Julia documentation, 2018). It can be used for arbitrary quantum continuous evolution based on GKSL master equation on arbitrary graphs. Solution method: We utilize Expokit routines for fast sparse matrix exponentials on vectors. For dense matrices, exponentiation is computed separately, which is faster for small matrices. Restrictions: Currently package requires Julia v0.6 or higher. [1] K. Domino, A. Glos, M. Ostaszewski, Superdiffusive quantum stochastic walk definable of arbitrary directed graph, Quantum Inform. Comput 17 (11-12) (2017) 973–986.

[1]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[2]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[3]  Sergio Albeverio,et al.  Frobenius theory for positive maps of von Neumann algebras , 1978 .

[4]  Paul Bourke,et al.  qwViz: Visualisation of quantum walks on graphs , 2011, Comput. Phys. Commun..

[5]  Jingbo B. Wang,et al.  pyCTQW: A continuous-time quantum walk simulator on distributed memory computers , 2015, Comput. Phys. Commun..

[6]  Jesús Gómez-Gardeñes,et al.  Quantum Navigation and Ranking in Complex Networks , 2012, Scientific Reports.

[7]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[8]  Adam Glos,et al.  Rapid and robust generation of Einstein-Podolsky-Rosen pairs with spin chains , 2016, Quantum Inf. Comput..

[9]  Alan Edelman,et al.  Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.

[10]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[11]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[12]  Adam Glos,et al.  Properties of quantum stochastic walks from the Hurst exponent , 2016 .

[13]  Jingbo B. Wang,et al.  QSWalk: A Mathematica package for quantum stochastic walks on arbitrary graphs , 2016, Comput. Phys. Commun..

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Jaroslaw Adam Miszczak,et al.  SINGULAR VALUE DECOMPOSITION AND MATRIX REORDERINGS IN QUANTUM INFORMATION THEORY , 2010, 1011.1585.

[16]  Renato Portugal,et al.  The QWalk simulator of quantum walks , 2008, Comput. Phys. Commun..

[17]  James D. Whitfield,et al.  Quantum Stochastic Walks: A Generalization of Classical Random Walks and Quantum Walks , 2009, 0905.2942.

[18]  B. M. Fulk MATH , 1992 .

[19]  Adam Glos,et al.  Limit properties of global interaction stochastic quantum walks on directed graphs , 2017 .

[20]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[21]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[22]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[23]  Hugo Bringuier,et al.  Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks , 2016, 1610.01298.

[24]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.