A family portrait of disk inner rims around Herbig Ae/Be stars

The innermost astronomical unit in protoplanetary disks is a key region for stellar and planet formation, as exoplanet searches have shown a large occurrence of close-in planets that are located within the first au around their host star. We aim to reveal the morphology of the disk inner rim using near-infrared interferometric observations with milli-arcsecond resolution provided by infrared interferometry. We provide reconstructed images of 15 objects selected from the Herbig AeBe survey carried out with PIONIER at the VLTI, using SPARCO. We find that 40% of the systems are centrosymmetric at the angular resolution of the observations. For the rest of the objects, we find evidence for asymmetric emission due to moderate-to-strong inclination of a disk-like structure for 30% of the objects and noncentrosymmetric morphology due to a nonaxisymmetric and possibly variable environment (30%). Among the systems with a disk-like structure, 20% show a resolved dust-free cavity. The image reconstruction process is a powerful tool to reveal complex disk inner rim morphologies. At the angular resolution reached by near-infrared interferometric observations, most of the images are compatible with a centrally peaked emission (no cavity). For the most resolved targets, image reconstruction reveals morphologies that cannot be reproduced by generic parametric models. Moreover, the nonaxisymmetric disks show that the spatial resolution probed by optical interferometers makes the observations of the near-infrared emission sensitive to temporal evolution with a time-scale down to a few weeks. The evidence of nonaxisymmetric emission that cannot be explained by simple inclination and radiative transfer effects requires alternative explanations, such as a warping of the inner disks. Interferometric observations can, therefore, be used to follow the evolution of the asymmetry of those disks at a sub-au scale.

[1]  T. Henning,et al.  Optical spectroscopy of close companions to nearby Herbig Ae/Be and T Tauri stars , 2007, astro-ph/0701208.

[2]  S. Casassus,et al.  SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK , 2014, 1412.4632.

[3]  W. Benz,et al.  Extrasolar planet population synthesis. III. Formation of planets around stars of different masses , 2011, 1101.0513.

[4]  F. Malbet,et al.  SPARCO : a semi-parametric approach for image reconstruction of chromatic objects. Application to young stellar objects , 2014, 1403.3343.

[5]  M. Benisty,et al.  RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS , 2016, 1604.04601.

[6]  J. Pineda,et al.  RESOLVED IMAGES OF THE PROTOPLANETARY DISK AROUND HD 100546 WITH ALMA , 2014, 1405.5773.

[7]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[8]  David Mouillet,et al.  The SPHERE view of the planet-forming disk around HD 100546 , 2016, 1601.04983.

[9]  L. Testi,et al.  A low optical depth region in the inner disk of the HerbigAe star HR5999 , 2011, 1106.4150.

[10]  J. Wisniewski,et al.  The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453 , 2017, 1703.00970.

[11]  M. Min,et al.  Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation , 2009, 0903.1231.

[12]  P. Artymowicz,et al.  Irradiation Instability at the Inner Edges of Accretion Disks , 2014, 1403.4244.

[13]  S. Rabien,et al.  The GRAVITY Young Stellar Object survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits , 2019, 1911.00611.

[14]  J. Fairlamb,et al.  A spectroscopic survey of Herbig Ae/Be stars with X-shooter – I. Stellar parameters and accretion rates , 2015, 1507.05967.

[15]  C. Dominik,et al.  Shadows and asymmetries in the T Tauri disk HD 143006: Evidence for a misaligned inner disk. , 2018, 1809.01082.

[16]  P. Varniere,et al.  Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546 ? , 2011, 1104.0905.

[17]  Samuli Siltanen,et al.  Computational Inverse Problems , 2010 .

[18]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[19]  J. Muzerolle,et al.  A SPITZER IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS , 2010, 1012.3500.

[20]  T. Ueda,et al.  Dust Pileup at the Dead-zone Inner Edge and Implications for the Disk Shadow , 2018, The Astrophysical Journal.

[21]  A. Burrows,et al.  RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS , 2015, 1511.02526.

[22]  F. Favata,et al.  CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264 , 2015, 1502.07692.

[23]  M. Colavita Fringe Visibility Estimators for the Palomar Testbed Interferometer , 1998, astro-ph/9810462.

[24]  C. Dominik,et al.  Connecting the shadows: probing inner disk geometries using shadows in transitional disks , 2017, 1704.01844.

[25]  K. Flaherty,et al.  SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I , 2016, 1609.09100.

[26]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[27]  P. Tuthill,et al.  The protoplanetary system HD 100546 in H α polarized light from SPHERE/ZIMPOL: A bar-like structure across the disk gap? , 2017, 1711.00023.

[28]  Willy Benz,et al.  Extrasolar planet population synthesis - II. Statistical comparison with observations , 2009, 0904.2542.

[29]  F. Malbet,et al.  A disk asymmetry in motion around the B[e] star MWC158 , 2016, 1605.05262.

[30]  M. Benisty,et al.  Observing the linked depletion of dust and CO gas at 0.1-10 au in disks of intermediate-mass stars , 2017, 1711.09095.

[31]  G. Chauvin,et al.  THE 2008 OUTBURST IN THE YOUNG STELLAR SYSTEM Z CMa: THE FIRST DETECTION OF TWIN JETS , 2010, 1008.0111.

[32]  B. Lazareff,et al.  Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging , 2017, 1710.02532.

[33]  M. Langlois,et al.  Dust modeling of the combined ALMA and SPHERE datasets of HD 163296 , 2018, Astronomy & Astrophysics.

[34]  A. Osses,et al.  An inner warp in the DoAr 44 T Tauri transition disc , 2018, 1804.02360.

[35]  M. Benisty,et al.  3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks , 2016, 1612.02740.

[36]  J. Faure,et al.  Vortex cycles at the inner edges of dead zones in protoplanetary disks , 2014, 1411.3236.

[37]  Jason J. Wang,et al.  An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO , 2017, 1704.06317.

[38]  H. Winckel,et al.  Relating jet structure to photometric variability: the Herbig Ae star HD 163296 , 2014, 1401.3744.

[39]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[40]  A. Boccaletti,et al.  High-contrast study of the candidate planets and protoplanetary disk around HD 100546 , 2018, Astronomy & Astrophysics.

[41]  Keiichi Ohnaka,et al.  Detection of an Inner Gaseous Component in a Herbig Be Star Accretion Disk: Near- and Mid-Infrared Spectrointerferometry and Radiative Transfer modeling of MWC 147 , 2007, 0711.4988.

[42]  Sascha P. Quanz,et al.  Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks , 2018, The Astrophysical Journal.

[43]  M. Tamura,et al.  Near-Infrared Imaging of the Circumstellar Disk around Herbig Ae Star HD 150193A , 2003 .

[44]  R. Oudmaijer,et al.  Gaia DR2 study of Herbig Ae/Be stars , 2018, Astronomy & Astrophysics.

[45]  H. McAlister,et al.  A Tale of Two Herbig Ae Stars, MWC 275 and AB Aurigae: Comprehensive Models for Spectral Energy Distribution and Interferometry , 2008, 0808.1728.

[46]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[47]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[48]  H. M. Günther,et al.  YSOVAR: MID-INFRARED VARIABILITY OF YOUNG STELLAR OBJECTS AND THEIR DISKS IN THE CLUSTER IRAS 20050+2720 , 2015, 1507.04325.

[49]  The shape of the inner rim in proto-planetary disks , 2005, astro-ph/0503635.

[50]  R. Gratton,et al.  The origin of R CrA variability , 2019, Astronomy & Astrophysics.

[51]  et al,et al.  Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLTI/AMBER , 2005, astro-ph/0510350.

[52]  Gerd Weigelt,et al.  Probing the accretion-ejection connection with VLTI/AMBER. High spectral resolution observations of the Herbig Ae star HD 163296 , 2015, 1502.03027.

[53]  B. Lazareff,et al.  The VLTI/PIONIER near-infrared interferometric survey of southern T Tauri stars - I. First results , 2014, 1412.1052.

[54]  John H. Debes,et al.  Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk , 2017, 1701.03152.

[55]  Fabien Malbet,et al.  Image reconstruction in optical interferometry: benchmarking the regularization , 2011, 1106.4508.

[56]  C. Dominik,et al.  The inner rim structures of protoplanetary discs , 2009, 0908.1692.

[57]  F. P. Schloerb,et al.  Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars , 2006, astro-ph/0606052.

[58]  L. Testi,et al.  Probing the wind-launching regions of the Herbig Be star HD 58647 with high spectral resolution interferometry , 2016, 1601.02209.

[59]  U. Exeter,et al.  The Inner Rim of YSO Disks: Effects of Dust Grain Evolution , 2007, astro-ph/0702044.

[60]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview , 2018, The Astrophysical Journal.

[61]  S. Hinkley,et al.  Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142 , 2017, 1702.04780.

[62]  Pierre Bastien,et al.  Monte Carlo radiative transfer in protoplanetary disks , 2006 .

[63]  R. Puetter,et al.  Variability of Disk Emission in Pre-Main-Sequence and Related Stars. I. HD 31648 and HD 163296: Isolated Herbig Ae Stars Driving Herbig-Haro Flows , 2007, 0712.4014.

[64]  Dmitry Savransky,et al.  Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO , 2017, 1704.06260.

[65]  R. Nelson,et al.  Planet filtering at the inner edges of dead zones in protoplanetary disks , 2016 .

[66]  T. Fusco,et al.  Shadows and spirals in the protoplanetary disk HD 100453 , 2016, 1610.10089.

[67]  R. Alexander,et al.  Scattered light shadows in warped protoplanetary discs , 2019, Monthly Notices of the Royal Astronomical Society.

[68]  D. Lai Warping of Accretion Disks with Magnetically Driven Outflows: A Possible Origin for Jet Precession , 2003, astro-ph/0306012.

[69]  Astronomy,et al.  CO emission tracing a warp or radial flow within $\lesssim$ 100 au in the HD 100546 protoplanetary disk , 2017, 1710.00703.

[70]  Julien H. Girard,et al.  A YOUNG PROTOPLANET CANDIDATE EMBEDDED IN THE CIRCUMSTELLAR DISK OF HD 100546 , 2013, 1302.7122.

[71]  T. Tsukagoshi,et al.  Detailed modeling of dust distribution in the disk of HD 142527 , 2017, 1701.06706.

[72]  B. Lazareff,et al.  Interferometric evidence for quantum heated particles in the inner region of protoplanetary disks around Herbig stars , 2016, 1612.06311.

[73]  H. Van Winckel,et al.  Imaging the dust sublimation front of a circumbinary disk , 2016, 1603.03023.

[74]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[75]  R. Millan-Gabet,et al.  On the interferometric sizes of young stellar objects , 2002 .

[76]  Julien H. Girard,et al.  CONFIRMATION AND CHARACTERIZATION OF THE PROTOPLANET HD 100546 b—DIRECT EVIDENCE FOR GAS GIANT PLANET FORMATION AT 50 AU , 2014, 1412.5173.

[77]  E. Tatulli,et al.  The complex structure of the disk around HD 100546 - The inner few astronomical units , 2010, 1001.2491.

[78]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[79]  D. Lin,et al.  ASSEMBLING THE BUILDING BLOCKS OF GIANT PLANETS AROUND INTERMEDIATE-MASS STARS , 2008, 0806.1521.

[80]  A. Königl,et al.  A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS , 2012, 1207.1508.

[81]  S. Wolf,et al.  Shadows and cavities in protoplanetary disks: HD 163296, HD 141569A, and HD 150193A in polarized light , 2014, 1406.7387.

[82]  R. L'opez,et al.  THE COUNTERJET OF HH 30: NEW LIGHT ON ITS BINARY DRIVING SOURCE , 2012, 1206.3391.

[83]  Andrea Isella,et al.  LARGE-SCALE ASYMMETRIES IN THE TRANSITIONAL DISKS OF SAO 206462 AND SR 21 , 2014 .