Predicting the performance of concrete structures exposed to chemically aggressive environment—Field validation

The behavior of two series of concrete slabs exposed to sulfate-bearing soils was investigated by a numerical model called STADIUM. In addition to the diffusion of ions and moisture, the model also accounts for the effects of dissolution/precipitation reactions on the transport mechanisms. The simulations yielded by the model were compared to the actual degradation of the slabs after 8 years of exposure. The microstructural alterations of concrete resulting from the penetration of magnesium, chloride and sulfate ions were studied by backscatter mode scanning electron microscope observations and energy-dispersive X-ray analyses. The comparison of both series of data indicates that the model can reliably predict the various features of the microstructural alterations of concrete.RésuméLe comportement de deux séries de dalles sur sol en béton exposées à des sols chimiquement agressifs a été étudié à l'aide d'un code de calcul numérique appelé STADIUM. Ce modèle permet de décrire le transport couplé de l'eau et des ions dans des matériaux poreux non-saturés en prenant en considération l'influence des réactions chimiques. Les résultats des simultations de la dégradation du béton après huit ans d'exposition à des ions chlore, sulfate et magnésium. Les observations ont été réalisées par microscopie électronique à balayage. Des analyses par dispersion des rayons X ont également été effectuées. Les données démontrent clairement que le modèle perment de prédire avec précision le comportement du béton soumis à différents types d'agression chimique.

[1]  Jacques Marchand,et al.  Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments , 2001 .

[2]  E. Samson,et al.  Modelling ion diffusion mechanisms in porous media , 1999 .

[3]  Jan Skalny,et al.  Sulfate attack on concrete , 2001 .

[4]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils: Fredlund/Soil Mechanics for Unsaturated Soils , 1993 .

[5]  D. Bentz,et al.  Influence of Calcium Hydroxide Dissolution on the Transport Properties of Hydrated Cement Systems | NIST , 2001 .

[6]  James J. Beaudoin,et al.  Modeling chemical activity effects in strong ionic solutions , 1999 .

[7]  Stefan Jacobsen,et al.  Effect of cracking and healing on chloride transport in OPC concrete , 1996 .

[8]  R. Mills Mass transfer of water vapour through concrete , 1985 .

[9]  J. E. Gillott Clay in engineering geology , 1968 .

[10]  D. Damidot,et al.  Thermodynamic investigation of the CaOAl2O3CaSO4H2O system at 25°C and the influence of Na2O , 1993 .

[11]  Iraj Noorany,et al.  Settlement of Compacted Fills Caused by Wetting , 1994 .

[12]  J. Marchand,et al.  Modeling Ion Transport Mechanisms in Unsaturated Porous Media | NIST , 2002 .

[13]  Leo L Pel,et al.  MOISTURE TRANSPORT IN POROUS BUILDING MATERIALS , 1996 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils , 1993 .

[16]  D. Damidot,et al.  Thermodynamic investigation of the CaO—Al2O3— CaSO4—CaCO3-H2O closed system at 25°C and the influence of Na2O , 1995 .

[17]  Sidney Diamond,et al.  Effects of two Danish flyashes on alkali contents of pore solutions of cement-flyash pastes , 1981 .

[18]  I. Sims,et al.  Concrete Petrography: A Handbook of Investigative Techniques , 1998 .

[19]  A. A. Colville,et al.  Efflorescent mineral assemblages associated with cracked and degraded residential concrete foundations in Southern California , 1989 .