Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes

The error floor phenomenon observed with LDPC codes and their graph-based, iterative, message-passing (MP) decoders is commonly attributed to the existence of error-prone substructures - variously referred to as near-codewords, trapping sets, absorbing sets, or pseudocodewords - in a Tanner graph representation of the code. Many approaches have been proposed to lower the error floor by designing new LDPC codes with fewer such substructures or by modifying the decoding algorithm. Using a theoretical analysis of iterative MP decoding in an idealized trapping set scenario, we show that a contributor to the error floors observed in the literature may be the imprecise implementation of decoding algorithms and, in particular, the message quantization rules used. We then propose a new quantization method - (q+1)-bit quasi-uniform quantization - that efficiently increases the dynamic range of messages, thereby overcoming a limitation of conventional quantization schemes. Finally, we use the quasi-uniform quantizer to decode several LDPC codes that suffer from high error floors with traditional fixed-point decoder implementations. The performance simulation results provide evidence that the proposed quantization scheme can, for a wide variety of codes, significantly lower error floors with minimal increase in decoder complexity.

[1]  Ruinan Chang,et al.  Accurate evaluation of exchange fields in finite element micromagnetic solvers , 2012 .

[2]  Lara Dolecek,et al.  Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes , 2009, IEEE Transactions on Information Theory.

[3]  David J. C. MacKay,et al.  Encyclopedia of Sparse Graph Codes , 1999 .

[4]  J.M.F. Moura,et al.  Structured LDPC codes for high-density recording: large girth and low error floor , 2006, IEEE Transactions on Magnetics.

[5]  Babak Daneshrad,et al.  A performance improvement and error floor avoidance technique for belief propagation decoding of LDPC codes , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[6]  Paul H. Siegel,et al.  Adaptive Cut Generation Algorithm for Improved Linear Programming Decoding of Binary Linear Codes , 2011, IEEE Transactions on Information Theory.

[7]  Shashi Kiran Chilappagari,et al.  Error Floors of LDPC Codes on the Binary Symmetric Channel , 2006, 2006 IEEE International Conference on Communications.

[8]  Frank E. Talke,et al.  Suppression of cross-track vibrations using a self-sensing micro-actuator in hard disk drives , 2012, Microsystem Technologies.

[9]  Jon Hamkins Performance of low-density parity-check coded modulation , 2010, 2010 IEEE Aerospace Conference.

[10]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[11]  F. Hellman,et al.  Fe spin reorientation across the metamagnetic transition in strained FeRh thin films. , 2012, Physical review letters.

[12]  Richard D. Wesel,et al.  Informed Dynamic Scheduling for Belief-Propagation Decoding of LDPC Codes , 2007, 2007 IEEE International Conference on Communications.

[13]  Paul H. Siegel,et al.  Error floor approximation for LDPC codes in the AWGN channel , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  Paul H. Siegel,et al.  Quantized min-sum decoders with low error floor for LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  David Declercq,et al.  Multilevel decoders surpassing belief propagation on the binary symmetric channel , 2010, 2010 IEEE International Symposium on Information Theory.

[16]  A. Gloskovskii,et al.  Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. , 2012, Physical review letters.

[17]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[18]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[19]  Martin Bossert,et al.  Optimization of a reduced-complexity decoding algorithm for LDPC codes by density evolution , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[20]  Hui Li,et al.  Reference Signal Shaping for Closed-Loop Systems With Application to Seeking in Hard Disk Drives , 2012, IEEE Transactions on Control Systems Technology.

[21]  Investigation of thermo-mechanical contact between slider and bit patterned media , 2012 .

[22]  J. W. Kim,et al.  Probing the three-dimensional strain inhomogeneity and equilibrium elastic properties of single crystal Ni nanowires , 2012, 1207.1475.

[23]  William E. Ryan,et al.  Low-floor decoders for LDPC codes , 2009, IEEE Transactions on Communications.

[24]  Shaojing Li,et al.  Advanced Micromagnetic Analysis of Write Head Dynamics Using Fastmag , 2012, IEEE Transactions on Magnetics.

[25]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..

[26]  S. Mangin,et al.  Time-resolved magnetic relaxation of a nanomagnet on subnanosecond time scales , 2012 .

[27]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[28]  S. Mangin,et al.  Co/Ni(111) superlattices studied by microscopy, x-ray absorption, and ab initio calculations , 2012 .

[29]  Frank E. Talke,et al.  Time dependent simulation of active flying height control of TFC sliders , 2012 .

[30]  V. Anantharam,et al.  Evaluation of the Low Frame Error Rate Performance of LDPC Codes Using Importance Sampling , 2007, 2007 IEEE Information Theory Workshop.

[31]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[32]  Hao Zheng,et al.  Numerical simulation of thermal flying height control sliders in heat-assisted magnetic recording , 2012 .

[33]  A. Berkowitz,et al.  Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance , 2012, Nanotechnology.

[34]  Chih-Chun Wang,et al.  Exhaustive search for small fully absorbing sets and the corresponding low error-floor decoder , 2010, 2010 IEEE International Symposium on Information Theory.

[35]  Xiaojie Zhang,et al.  Will the real error floor please stand up? , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[36]  Paul H. Siegel,et al.  Numerical issues affecting LDPC error floors , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[37]  Valentin Savin,et al.  Iterative LDPC decoding using neighborhood reliabilities , 2007, 2007 IEEE International Symposium on Information Theory.

[38]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[39]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes , 2005, IEEE Transactions on Communications.

[40]  Lara Dolecek,et al.  Lowering LDPC Error Floors by Postprocessing , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[41]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[42]  Frank E. Talke,et al.  Design of suspension-based and collocated dual stage actuated suspensions , 2012 .

[43]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[44]  P. Vontobel,et al.  Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.

[45]  Paul H. Siegel,et al.  Codes for Write-Once Memories , 2012, IEEE Transactions on Information Theory.

[46]  Aleksandar Kavcic,et al.  Augmented Belief Propagation Decoding of Low-Density Parity Check Codes , 2006, IEEE Transactions on Communications.

[47]  Dong Ho Kim,et al.  Transport and switching behaviors in magnetic tunnel junctions consisting of CoFeB/FeNiSiB hybrid free layers , 2012 .

[48]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[49]  M. A. Escobar,et al.  Domain wall motion in magnetically frustrated nanorings , 2012 .

[50]  Lara Dolecek,et al.  Design of LDPC decoders for improved low error rate performance: quantization and algorithm choices , 2009, IEEE Transactions on Communications.

[51]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[52]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[53]  D. Divsalar,et al.  Protograph based low error floor LDPC coded modulation , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[54]  David J. Smith,et al.  Controlled growth behavior of chemical vapor deposited Ni nanostructures , 2012 .

[55]  Brendan J. Frey,et al.  Signal-space characterization of iterative decoding , 2001, IEEE Trans. Inf. Theory.

[56]  Paul H. Siegel,et al.  Efficient Algorithms to Find All Small Error-Prone Substructures in LDPC Codes , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[57]  D. Paul,et al.  Application Of Surface Analytical Techniques For Understanding Deposit Formation On Magnetic Tape Recording Head Surfaces , 2012, Microscopy and Microanalysis.

[58]  J. Katine,et al.  State diagram of nanopillar spin valves with perpendicular magnetic anisotropy , 2012 .