Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation.

We characterized the elastic properties of GaN nanowires grown along different crystallographic orientations. In situ transmission electron microscopy tensile tests were conducted using a MEMS-based nanoscale testing system. Complementary atomistic simulations were performed using density functional theory and molecular dynamics. Our work establishes that elasticity size dependence is limited to nanowires with diameters smaller than 20 nm. For larger diameters, the elastic modulus converges to the bulk values of 300 GPa for c-axis and 267 GPa for a- and m-axis.

[1]  J. Fischer,et al.  Defects in GaN Nanowires , 2006 .

[2]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[3]  J. Melngailis,et al.  Experimental investigation of electron transport properties of gallium nitride nanowires , 2008 .

[4]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. , 1991, Physical review. B, Condensed matter.

[5]  J. J. Browna,et al.  Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages , 2011 .

[6]  H. Espinosa,et al.  Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization , 2007, Journal of Microelectromechanical Systems.

[7]  H. Espinosa,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization , 2022 .

[8]  Igor Levin,et al.  Catalyst-free growth of GaN nanowires , 2006 .

[9]  W. J. Weber,et al.  Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression , 2008 .

[10]  Andris Gulans,et al.  Ab initio calculation of wurtzite-type GaN nanowires , 2007 .

[11]  Shuji Nakamura,et al.  The blue laser diode-the complete story , 2000 .

[12]  Hadis Morkoç,et al.  Nitride Semiconductors and Devices , 1999 .

[13]  Lawrence H. Robins,et al.  Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy , 2008 .

[14]  Wendy L. Sarney,et al.  Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3 , 2000 .

[15]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[16]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Horacio Dante Espinosa,et al.  A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures , 2005 .

[18]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[19]  Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays. , 2007, Nano letters.

[20]  K. A. Bertnessa,et al.  Spontaneously grown GaN and AlGaN nanowires , 2006 .

[21]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[22]  R. Egerton Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[23]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[24]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[25]  W. Nix,et al.  A study of the mechanical properties of nanowires using nanoindentation , 2006 .

[26]  Robert E. Newnham,et al.  Structure-Property Relations , 1975 .

[27]  Eleftherios E. Gdoutos,et al.  Elasticity size effects in ZnO nanowires--a combined experimental-computational approach. , 2008, Nano letters.

[28]  H. Espinosa,et al.  Multiscale Experiments: State of the Art and Remaining Challenges , 2009 .

[29]  J. M. Gray,et al.  High-Q GaN nanowire resonators and oscillators , 2007 .

[30]  Stephane Evoy,et al.  Diameter-dependent electromechanical properties of GaN nanowires. , 2006, Nano letters.

[31]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[32]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[33]  J. Melngailis,et al.  Diameter dependent transport properties of gallium nitride nanowire field effect transistors , 2007 .

[34]  Guosheng Cheng,et al.  Elastic modulus of single-crystal GaN nanowires , 2006 .

[35]  H. Espinosa,et al.  MEMS for In Situ Testing—Handling, Actuation, Loading, and Displacement Measurements , 2010 .

[36]  Xiaojing Zheng,et al.  Theoretical analysis of electric field effect on Young’s modulus of nanowires , 2006 .

[37]  Horacio D Espinosa,et al.  Experimental-computational investigation of ZnO nanowires strength and fracture. , 2009, Nano letters.

[38]  P. Komninou,et al.  A modified empirical potential for energetic calculations of planar defects in GaN , 2003 .

[39]  Ian H. Stevenson,et al.  Mechanical elasticity of vapour–liquid–solid grown GaN nanowires , 2007, Nanotechnology.

[40]  Zhong Lin Wang,et al.  Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. , 2009, Nano letters.

[41]  Harold S. Park,et al.  Mechanics of Crystalline Nanowires , 2009 .

[42]  S. Nakamura,et al.  BRILLOUIN SCATTERING STUDY OF BULK GAN , 1999 .

[43]  K. Bertness,et al.  Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy , 2008 .

[44]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .