Research on the primary energy conversion efficiency of pendulum wave energy converter

This paper aims to study the parameter interaction of Pendulum Wave Energy Converter to improve the energy conversion efficiency. A second-order linear model is established based on force analysis and parametric simulation is conducted under a supposed wave condition, of which the wave length is 25m. It is shown that incident wave energy and actuating torque reach their peak values when depth is between 3.5m to 4.5m and the corresponding efficiency is above 27%. Besides water chamber width has little influence on conversion efficiency but is proportional to incident energy. Furthermore once the system natural frequency is fixed, efficiency maximizes only when mechanical damping factor equals to hydraulic damping factor. Finally when wave length increases, the efficiency drops. To prevent the decrease, it is suggested to extend the distance between flap support center and gravity center.