An Unbalanced Weighted Sequential Fusing Multi-Sensor GM-PHD Algorithm

In this paper, we study the multi-sensor multi-target tracking problem in the formulation of random finite sets. The Gaussian Mixture probability hypothesis density (GM-PHD) method is employed to formulate the sequential fusing multi-sensor GM-PHD (SFMGM-PHD) algorithm. First, the GM-PHD is applied to multiple sensors to get the posterior GM estimations in a parallel way. Second, we propose the SFMGM-PHD algorithm to fuse the multi-sensor GM estimations in a sequential way. Third, the unbalanced weighted fusing and adaptive sequence ordering methods are further proposed for two improved SFMGM-PHD algorithms. At last, we analyze the proposed algorithms in four different multi-sensor multi-target tracking scenes, and the results demonstrate the efficiency.

[1]  Weijian Si,et al.  Multi-Target State Extraction for the SMC-PHD Filter , 2016, Sensors.

[2]  Hao Wu,et al.  A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers , 2018, Sensors.

[3]  Meiguo Gao,et al.  Tracking Ground Targets with a Road Constraint Using a GMPHD Filter , 2018, Sensors.

[4]  Moe Z. Win,et al.  Message Passing Algorithms for Scalable Multitarget Tracking , 2018, Proceedings of the IEEE.

[5]  Ronald P. S. Mahler,et al.  Random Set Theory for Target Tracking and Identification , 2001 .

[6]  S. Singh,et al.  Novel data association schemes for the probability hypothesis density filter , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Ronald Mahler The multisensor PHD filter: II. Erroneous solution via Poisson magic , 2009, Defense + Commercial Sensing.

[8]  B. Vo,et al.  Data Association and Track Management for the Gaussian Mixture Probability Hypothesis Density Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Michael G. Rabbat,et al.  A Multisensor Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[10]  Ángel F. García-Fernández,et al.  Trajectory probability hypothesis density filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[11]  Juan M. Corchado,et al.  A Robust Multi-Sensor PHD Filter Based on Multi-Sensor Measurement Clustering , 2018, IEEE Communications Letters.

[12]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[13]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[14]  Daniel E. Clark,et al.  On the ordering of the sensors in the iterated-corrector probability hypothesis density (PHD) filter , 2011, Defense + Commercial Sensing.

[15]  Michael G. Rabbat,et al.  Multisensor CPHD filter , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Ba-Ngu Vo,et al.  Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities , 2014, IEEE Transactions on Signal Processing.

[17]  Karl J. Molnar,et al.  Application of the EM algorithm for the multitarget/multisensor tracking problem , 1998, IEEE Trans. Signal Process..

[18]  Hongbing Ji,et al.  Scale unbalance problem in product multisensor PHD filter , 2011 .

[19]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Applications and Advances , 1992 .

[20]  Ronald P. S. Mahler The multisensor PHD filter: I. General solution via multitarget calculus , 2009, Defense + Commercial Sensing.

[21]  Ling Shi,et al.  Sequential fusion estimation for clustered sensor networks , 2017, Autom..

[22]  Thia Kirubarajan,et al.  Multisensor particle filter cloud fusion for multitarget tracking , 2008, 2008 11th International Conference on Information Fusion.

[23]  Xu Jian,et al.  The multi-sensor PHD filter: Analytic implementation via Gaussian mixture and effective binary partition , 2013, Proceedings of the 16th International Conference on Information Fusion.

[24]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[25]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[26]  Lucy Y. Pao,et al.  The optimal order of processing sensor information in sequential multisensor fusion algorithms , 2000, IEEE Trans. Autom. Control..

[27]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[28]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[29]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[30]  James Llinas,et al.  Handbook of Multisensor Data Fusion : Theory and Practice, Second Edition , 2008 .

[31]  Ronald P. S. Mahler,et al.  Approximate multisensor CPHD and PHD filters , 2010, 2010 13th International Conference on Information Fusion.

[32]  You He,et al.  Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association , 2017, Sensors.

[33]  Taek Lyul Song,et al.  Iterative joint integrated probabilistic data association filter for multiple-detection multiple-target tracking , 2018, Digit. Signal Process..

[34]  Y. Bar-Shalom Tracking and data association , 1988 .

[35]  Yuan Gao,et al.  Sequential covariance intersection fusion Kalman filter , 2012, Inf. Sci..