Bayesian Parameter Identification for Turing Systems on Stationary and Evolving Domains

In this study, we apply the Bayesian paradigm for parameter identification to a well-studied semi-linear reaction–diffusion system with activator-depleted reaction kinetics, posed on stationary as well as evolving domains. We provide a mathematically rigorous framework to study the inverse problem of finding the parameters of a reaction–diffusion system given a final spatial pattern. On the stationary domain the parameters are finite-dimensional, but on the evolving domain we consider the problem of identifying the evolution of the domain, i.e. a time-dependent function. Whilst others have considered these inverse problems using optimisation techniques, the Bayesian approach provides a rigorous mathematical framework for incorporating the prior knowledge on uncertainty in the observation and in the parameters themselves, resulting in an approximation of the full probability distribution for the parameters, given the data. Furthermore, using previously established results, we can prove well-posedness results for the inverse problem, using the well-posedness of the forward problem. Although the numerical approximation of the full probability is computationally expensive, parallelised algorithms make the problem solvable using high-performance computing.

[1]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[2]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[3]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[4]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[5]  J. Kaipio,et al.  Approximation errors in nonstationary inverse problems , 2007 .

[6]  P. Maini,et al.  Reaction and diffusion on growing domains: Scenarios for robust pattern formation , 1999, Bulletin of mathematical biology.

[7]  Chandrasekhar Venkataraman,et al.  Parameter identification problems in the modelling of cell motility , 2013, Journal of mathematical biology.

[8]  Styles,et al.  A parallel and adaptive multigrid solver for the solutions of the optimal control of geometric evolution laws in two and three dimensions , 2015 .

[9]  G. Karniadakis,et al.  Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond , 2016, Journal of The Royal Society Interface.

[10]  Marco A. Iglesias,et al.  Well-posed Bayesian geometric inverse problems arising in subsurface flow , 2014, 1401.5571.

[11]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[12]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[13]  P. Aspden,et al.  Introduction to Optimization Methods , 1977 .

[14]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[15]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[16]  D. Das Turing pattern formation in anisotropic medium , 2017, Journal of Mathematical Chemistry.

[17]  Anotida Madzvamuse,et al.  Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.

[18]  Jacobo Guiu-Souto,et al.  Influence of oscillatory centrifugal forces on the mechanism of Turing pattern formation. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  J. Mackenzie,et al.  Analysis of stability and convergence of finite-difference methods for a reaction-diffusion problem on a one-dimensional growing domain , 2011 .

[20]  Martin Stoll,et al.  Fast solvers for optimal control problems from pattern formation , 2016, J. Comput. Phys..

[21]  Omar Lakkis,et al.  Implicit-Explicit Timestepping with Finite Element Approximation of Reaction-Diffusion Systems on Evolving Domains , 2011, SIAM J. Numer. Anal..

[22]  Deming Liu,et al.  On the control of the microresonator optical frequency comb in turing pattern regime via parametric seeding , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[23]  Wei Zhao,et al.  Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator. , 2015, Applied optics.

[24]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[25]  SIAM Working Group on CSE Education Graduate Education in Computational Science and Engineering , 2001, SIAM Rev..

[26]  Arne Leijon,et al.  Bayesian Estimation of Beta Mixture Models with Variational Inference , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jiguo Cao,et al.  Parameter Estimation of Partial Differential Equation Models , 2013, Journal of the American Statistical Association.

[28]  Stéphanie Portet,et al.  Keratin Dynamics: Modeling the Interplay between Turnover and Transport , 2015, PloS one.

[29]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[30]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[31]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[32]  Anotida Madzvamuse,et al.  Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion , 2015 .

[33]  Deborah Lacitignola,et al.  Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition , 2017, Commun. Nonlinear Sci. Numer. Simul..

[34]  I. Prigogine,et al.  On symmetry-breaking instabilities in dissipative systems , 1967 .

[35]  Bülent Karasözen,et al.  Optimal control of convective FitzHugh-Nagumo equation , 2015, Comput. Math. Appl..

[36]  Adaptive Finite Elements for Semilinear Reaction-Diffusion Systems on Growing Domains , 2013, 1308.2449.

[37]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[38]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[39]  H. Tjelmeland,et al.  Using all Metropolis-Hastings proposals to estimate mean values , 2004 .

[40]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[41]  Andrew J. Wathen,et al.  A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains , 2005, J. Sci. Comput..

[42]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[43]  Philip K. Maini,et al.  Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains , 2007, J. Comput. Phys..

[44]  Philip K. Maini,et al.  An efficient and robust numerical algorithm for estimating parameters in Turing systems , 2010, J. Comput. Phys..

[45]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[46]  Markos A Katsoulakis,et al.  Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. , 2016, Nature chemistry.

[47]  Nizar Bouguila,et al.  Variational Learning for Finite Dirichlet Mixture Models and Applications , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[48]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[49]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[50]  Johannes Jaeger,et al.  Parameter estimation and determinability analysis applied to Drosophila gap gene circuits , 2008, BMC Systems Biology.

[51]  Honggang Zhang,et al.  Variational Bayesian Matrix Factorization for Bounded Support Data , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Ben Calderhead,et al.  A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.

[53]  Marc Hoffmann,et al.  Parameter Estimation For Partial Differential Equations , 2013 .

[54]  Bülent Karasözen,et al.  Reduced order optimal control of the convective FitzHugh-Nagumo equations , 2017, Comput. Math. Appl..

[55]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[56]  Anotida Madzvamuse,et al.  Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains , 2006, J. Comput. Phys..

[57]  J. Arnold,et al.  An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[59]  R. D. Vigil,et al.  Turing patterns in a simple gel reactor , 1992 .

[60]  K. S. Brown,et al.  Statistical mechanical approaches to models with many poorly known parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Marcus R. Garvie,et al.  Identification of Space-Time Distributed Parameters in the Gierer-Meinhardt Reaction-Diffusion System , 2014, SIAM J. Appl. Math..

[62]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[63]  P. Maini,et al.  Pattern formation in reaction-diffusion models with nonuniform domain growth , 2002, Bulletin of mathematical biology.

[64]  Andrew Parker,et al.  Using approximate Bayesian computation to quantify cell–cell adhesion parameters in a cell migratory process , 2016, npj Systems Biology and Applications.

[65]  O. Lakkis,et al.  Global existence for semilinear reaction–diffusion systems on evolving domains , 2010, Journal of Mathematical Biology.

[66]  Constantino Carlos Reyes-Aldasoro,et al.  Whole cell tracking through the optimal control of geometric evolution laws , 2015, J. Comput. Phys..