Transient multiscale thermoelastic analysis of functionally graded materials

This study is concerned with the transient multiscale analysis of two-phase functionally graded materials within the framework of linearized thermoelasticity. The two-phase material microstructures, which are created using a morphology description function, have material morphologies that depend on the volume fractions of the constituent phases. The functionally graded materials considered here have a smooth spatial variation of microstructure and homogenized material properties. The multiscale problem, which involves both macroscopic and microscopic length scales, is analyzed using asymptotic expansion homogenization coupled with the finite element method. The accuracy of the implemented multiscale analysis is verified by comparing the results against two validation problems. Subsequently, two model problems are studied to illustrate the versatility of the multiscale analysis procedure. In the first model problem, a functionally graded tungsten/copper specimen with spatially varying microstructural morphology and time-varying applied heat flux on its boundary is investigated. The second model problem concerns a functionally graded titanium/zirconia turbine blade geometry with random microstructure. For each of the model problems, the microscale stresses are utilized to perform a direct micromechanical failure analysis.

[1]  S. Vel,et al.  Multi-objective optimization of functionally graded materials with temperature-dependent material properties , 2007 .

[2]  J. L. Nowinski,et al.  Theory of thermoelasticity with applications , 1978 .

[3]  Liu Shutian,et al.  Topology description function based method for material design , 2006 .

[4]  K. Bowman Mechanical Behavior of Materials , 2003 .

[5]  Gilles A. Francfort,et al.  Homogenization and Linear Thermoelasticity , 1983 .

[6]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[7]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[8]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[9]  G. Paulino,et al.  A Multiscale Framework for Elastic Deformation of Functionally Graded Composites , 2005 .

[10]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[11]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[12]  L. Gibson,et al.  The mechanical behaviour of interpenetrating phase composites — III: resin-impregnated porous stainless steel , 2001 .

[13]  Teubner,et al.  Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Isaac Elishakoff,et al.  Analytical Polynomial Solutions for Vibrating Axially Graded Beams , 2004 .

[15]  Glaucio H. Paulino,et al.  Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials , 2006 .

[16]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[17]  S. Vel,et al.  Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates , 2002 .

[18]  Vadim Shapiro,et al.  Heterogeneous material modeling with distance fields , 2004, Comput. Aided Geom. Des..

[19]  L. Gibson,et al.  The mechanical behaviour of interpenetrating phase composites – I: modelling , 2000 .

[20]  Robert Lipton,et al.  Design of functionally graded composite structures in the presence of stress constraints , 2002 .

[21]  Xi-Qiao Feng,et al.  Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites , 2004 .

[22]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[23]  Marcin Kamiński,et al.  Effective elastoplastic properties of the periodic composites , 2001 .

[24]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[25]  F. Keulen,et al.  Topology optimization using a Topology Description function , 2004 .

[26]  S. Vel,et al.  Multiscale thermoelastic analysis of random heterogeneous materials: Part II: Direct micromechanical failure analysis and multiscale simulations , 2010 .

[27]  R. Lindsay NOAA ATLAS 3. The Central North Atlantic Ocean Basin and Continental Margins: Geology, Geophysics, Geochemistry and Resources, Including the Transatlantic Geotraverse (TAG), by Peter A. Rona , 1981 .

[28]  Jacob Fish,et al.  Multiscale damage modelling for composite materials: theory and computational framework , 2001 .

[29]  S. Gasik THERMAL-ELASTO-PLASTIC ANALYSIS OF W-CU FUNCTIONALLY GRADED MATERIALS SUBJECTED TO A UNIFORM HEAT FLOW BY MICROMECHANICAL MODEL , 2000 .

[30]  E. Sanchez-Palencia Homogenization method for the study of composite media , 1983 .

[31]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[32]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[33]  R. Bruce Lindsay,et al.  Nonhomogeneous Media and Vibration Theory, by Enrique Sanchez‐Palencia , 1981 .

[34]  L. Qian,et al.  Static and dynamic analysis of 2‐D functionally graded elasticity by using meshless local petrov‐galerkin method , 2004 .

[35]  Roberts,et al.  Structure-property correlations in model composite materials. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  S. Vel,et al.  Multi-objective optimization of functionally graded thick shells for thermal loading , 2007 .

[37]  H. Awaji,et al.  Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing , 2005 .

[38]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[39]  Javier Segurado,et al.  Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models , 2004 .

[40]  J. N. Reddy,et al.  Vibration of functionally graded cylindrical shells , 1999 .

[41]  Andrew J. Goupee,et al.  Multiscale thermoelastic analysis of random heterogeneous materials. Part I: Microstructure characterization and homogenization of material properties , 2010 .

[42]  Jin-Rae Cho,et al.  Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM , 2002 .

[43]  Subra Suresh,et al.  Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients , 1996 .

[44]  Akira Kawasaki,et al.  Concept and P/M fabrication of functionally gradient materials , 1997 .

[45]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[46]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[47]  A. L. Florence,et al.  Dynamic problems of thermoelasticity , 1975 .

[48]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[49]  S. Vel,et al.  Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm , 2006 .

[50]  A. K. Norr,et al.  Adaptive, Multilevel, and Hierarchical Computational Strategies , 1992 .

[51]  Naoki Takano,et al.  Multi-scale computational method for elastic bodies with global and local heterogeneity , 2000 .

[52]  Romesh C. Batra,et al.  Three-dimensional thermoelastic deformations of a functionally graded elliptic plate , 2000 .

[53]  A. Taliercio Generalized plane strain finite element model for the analysis of elastoplastic composites , 2005 .

[54]  Romesh C. Batra,et al.  Three-dimensional analysis of transient thermal stresses in functionally graded plates , 2003 .

[55]  Ryuzo Watanabe,et al.  Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators , 2003 .

[56]  P. Mummery,et al.  Processing, microstructure, and physical properties of interpenetrating Al2O3/Ni composites , 2000 .