The Duals of Upward Planar Graphs on Cylinders

We consider directed planar graphs with an upward planar drawing on the rolling and standing cylinders. These classes extend the upward planar graphs in the plane. Here, we address the dual graphs. Our main result is a combinatorial characterization of these sets of upward planar graphs. It basically shows that the roles of the standing and the rolling cylinders are interchanged for their duals.

[1]  S. Mehdi Hashemi Digraph embedding , 2001, Discret. Math..

[2]  Christian Bachmaier,et al.  Classification of Planar Upward Embedding , 2011, Graph Drawing.

[3]  Ardeshir Dolati Digraph Embedding on Th , 2008, CTW.

[4]  Ardeshir Dolati,et al.  On the sphericity testing of single source digraphs , 2008, Discret. Math..

[5]  Christian Bachmaier,et al.  A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information , 2007, IEEE Transactions on Visualization and Computer Graphics.

[6]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[7]  J. van Leeuwen,et al.  Drawing Graphs , 2001, Lecture Notes in Computer Science.

[8]  Meena Mahajan,et al.  Upper Bounds for Monotone Planar Circuit Value and Variants , 2009, computational complexity.

[9]  Andrzej Kisielewicz,et al.  The Complexity of Upward Drawings on Spheres , 1997 .

[10]  Walter Didimo,et al.  Quasi-Upward Planarity , 1998, Algorithmica.

[11]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[12]  Christian Bachmaier,et al.  Drawing Recurrent Hierarchies , 2012, J. Graph Algorithms Appl..

[13]  Ardeshir Dolati,et al.  On the Upward Embedding on the Torus , 2008 .

[14]  C. Thomassen Planar acyclic oriented graphs , 1989 .

[15]  Franz-Josef Brandenburg On the Curve Complexity of Upward Planar Drawings , 2012, CATS.

[16]  Ardeshir Dolati Digraph Embedding on T h . , 2008 .

[17]  Meena Mahajan,et al.  Evaluating Monotone Circuits on Cylinders, Planes and Tori , 2006, STACS.

[18]  Kristoffer Arnsfelt Hansen Constant Width Planar Computation Characterizes ACC0 , 2005, Theory of Computing Systems.

[19]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Jorge Urrutia,et al.  Light sources, obstructions and spherical orders , 1992, Discret. Math..

[21]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[22]  David Kelly Fundamentals of planar ordered sets , 1987, Discret. Math..