Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations.

A general method for deriving maximally informative sigmoidal tuning curves for neural systems with small normalized variability is presented. The optimal tuning curve is a nonlinear function of the cumulative distribution function of the stimulus and depends on the mean-variance relationship of the neural system. The derivation is based on a known relationship between Shannon's mutual information and Fisher information, and the optimality of Jeffrey's prior. It relies on the existence of closed-form solutions to the converse problem of optimizing the stimulus distribution for a given tuning curve. It is shown that maximum mutual information corresponds to constant Fisher information only if the stimulus is uniformly distributed. As an example, the case of sub-Poisson binomial firing statistics is analyzed in detail.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  L. Goddard Information Theory , 1962, Nature.

[3]  R. Stein,et al.  The information capacity of nerve cells using a frequency code. , 1967, Biophysical journal.

[4]  D H Johnson,et al.  Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. , 1976, Biophysical journal.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[7]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[8]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Nicolas Brunel,et al.  Mutual Information, Fisher Information, and Population Coding , 1998, Neural Computation.

[10]  M. White,et al.  A stochastic model of the electrically stimulated auditory nerve: pulse-train response , 1999, IEEE Transactions on Biomedical Engineering.

[11]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[12]  R Krahe,et al.  Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia. , 2000, Journal of neurophysiology.

[13]  W. Newsome,et al.  A Comparison of Spiking Statistics in Motion Sensing Neurones of Flies and Monkeys , 2001 .

[14]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[15]  H. Sompolinsky,et al.  Mutual information of population codes and distance measures in probability space. , 2001, Physical review letters.

[16]  J. Zanker,et al.  Motion vision : computational, neural, and ecological constraints , 2001 .

[17]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[18]  Matthias Bethge,et al.  Optimal Short-Term Population Coding: When Fisher Information Fails , 2002, Neural Computation.

[19]  M. Bethge,et al.  Optimal neural rate coding leads to bimodal firing rate distributions. , 2003, Network.

[20]  M. Bethge,et al.  Second order phase transition in neural rate coding: binary encoding is optimal for rapid signal transmission. , 2003, Physical review letters.

[21]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[22]  K. Obermayer,et al.  Optimal noise-aided signal transmission through populations of neurons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  N. Turner PLOS Biology , 2004, BMJ : British Medical Journal.

[24]  Frank R. Kschischang,et al.  Capacity-achieving probability measure for conditionally Gaussian channels with bounded inputs , 2005, IEEE Transactions on Information Theory.

[25]  D. Butts,et al.  Tuning Curves, Neuronal Variability, and Sensory Coding , 2006, PLoS biology.

[26]  E. Salinas How Behavioral Constraints May Determine Optimal Sensory Representations , 2006, PLoS biology.

[27]  Derek Abbott,et al.  Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Petr Lánský,et al.  Optimal signal in sensory neurons under an extended rate coding concept , 2007, Biosyst..

[29]  Brent Doiron,et al.  Gamma Oscillations of Spiking Neural Populations Enhance Signal Discrimination , 2007, PLoS Comput. Biol..

[30]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.