Population pharmacokinetics of meropenem in critically ill children with different renal functions

[1]  A. Rhodes,et al.  Scaling beta‐lactam antimicrobial pharmacokinetics from early life to old age , 2018, British journal of clinical pharmacology.

[2]  D. Teupser,et al.  Multiplex Therapeutic Drug Monitoring by Isotope-dilution HPLC-MS/MS of Antibiotics in Critical Illnesses. , 2018, Journal of visualized experiments : JoVE.

[3]  S. Urien,et al.  Population Pharmacokinetic Model to Optimize Cefotaxime Dosing Regimen in Critically Ill Children , 2018, Clinical Pharmacokinetics.

[4]  S. Urien,et al.  Piperacillin Population Pharmacokinetics and Dosing Regimen Optimization in Critically Ill Children with Normal and Augmented Renal Clearance , 2018, Clinical Pharmacokinetics.

[5]  P. Clarke,et al.  Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: results from the NeoMero studies , 2018, The Journal of antimicrobial chemotherapy.

[6]  D. Marriott,et al.  Too much of a good thing: a retrospective study of &bgr;-lactam concentration–toxicity relationships , 2017, The Journal of antimicrobial chemotherapy.

[7]  June-Dong Park,et al.  Predicting augmented renal clearance using estimated glomerular filtration rate in critically-ill children
. , 2017, Clinical Nephrology.

[8]  J. Le,et al.  Augmented Renal Clearance Using Population-Based Pharmacokinetic Modeling in Critically Ill Pediatric Patients* , 2017, Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.

[9]  Arun Chopra,et al.  Population Pharmacokinetics and Pharmacodynamic Target Attainment of Meropenem in Critically Ill Young Children. , 2017, The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of PPAG.

[10]  S. Eakanunkul,et al.  Pharmacokinetics and pharmacodynamics of meropenem in children with severe infection. , 2016, International journal of antimicrobial agents.

[11]  P. Pelosi,et al.  Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients , 2016, European Journal of Clinical Pharmacology.

[12]  Arun Chopra,et al.  Pharmacokinetics of Continuous Infusion Meropenem With Concurrent Extracorporeal Life Support and Continuous Renal Replacement Therapy: A Case Report. , 2016, The Journal of Pediatric Pharmacology and Therapeutics.

[13]  J. Roberts,et al.  Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. , 2015, Current opinion in pharmacology.

[14]  A. Verstraete,et al.  Augmented Renal Clearance Implies a Need for Increased Amoxicillin-Clavulanic Acid Dosing in Critically Ill Children , 2015, Antimicrobial Agents and Chemotherapy.

[15]  A. Torres,et al.  Meropenem Population Pharmacokinetics in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy: Influence of Residual Diuresis on Dose Requirements , 2015, Antimicrobial Agents and Chemotherapy.

[16]  J. D. De Waele,et al.  Augmented renal clearance and therapeutic monitoring of β-lactams. , 2015, International journal of antimicrobial agents.

[17]  S. Blot,et al.  The effect of pathophysiology on pharmacokinetics in the critically ill patient--concepts appraised by the example of antimicrobial agents. , 2014, Advanced drug delivery reviews.

[18]  Michael N Neely,et al.  Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. , 2014, The Lancet. Infectious diseases.

[19]  Bruno Grandbastien,et al.  PELOD-2: An Update of the PEdiatric Logistic Organ Dysfunction Score , 2013, Critical care medicine.

[20]  A. Verstraete,et al.  Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? , 2013, Critical Care.

[21]  F. Taccone Continuous infusion of meropenem in critically ill patients: practical considerations , 2012, Critical Care.

[22]  T. B. Andersen Estimating renal function in children: a new GFR-model based on serum cystatin C and body cell mass. , 2012, Danish medical journal.

[23]  Joshua D. Courter,et al.  Optimizing bactericidal exposure for β‐lactams using prolonged and continuous infusions in the pediatric population , 2009, Pediatric blood & cancer.

[24]  F. Sorgel,et al.  Meropenem Pharmacokinetics in the Newborn , 2009, Antimicrobial Agents and Chemotherapy.

[25]  M. Roberts,et al.  Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. , 2009, The Journal of antimicrobial chemotherapy.

[26]  M. Coulthard,et al.  Human renal function maturation: a quantitative description using weight and postmenstrual age , 2009, Pediatric Nephrology.

[27]  J. Zahar,et al.  Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[28]  M. Rasmussen,et al.  Meropenem Pharmacokinetics, Pharmacodynamics, and Monte Carlo Simulation in the Neonate , 2008, The Pediatric infectious disease journal.

[29]  N. Holford,et al.  Mechanism-based concepts of size and maturity in pharmacokinetics. , 2008, Annual review of pharmacology and toxicology.

[30]  L S Jefferson,et al.  Modified RIFLE criteria in critically ill children with acute kidney injury. , 2007, Kidney international.

[31]  D. Nicolau,et al.  Population Pharmacokinetics and Pharmacodynamics of Meropenem in Pediatric Patients , 2006, Journal of clinical pharmacology.

[32]  G. Drusano,et al.  Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. , 2004, Clinical therapeutics.

[33]  G. Drusano,et al.  Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation: CME REVIEW ARTICLE , 2003, The Pediatric infectious disease journal.

[34]  J. Mouton International Society of Anti-infective Pharmacology , 2002 .

[35]  S. Goldstein,et al.  Meropenem pharmacokinetics in children and adolescents receiving hemodialysis , 2001, Pediatric Nephrology.

[36]  J. Turnidge The Pharmacodynamics of β-Lactams , 1998 .

[37]  W. Craig,et al.  The pharmacology of meropenem, a new carbapenem antibiotic. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[38]  M. Hutchison,et al.  The pharmacokinetics of meropenem in infants and children: a population analysis. , 1995, The Journal of antimicrobial chemotherapy.

[39]  M. Hutchison,et al.  Pharmacokinetics of meropenem in subjects with various degrees of renal impairment , 1992, Antimicrobial Agents and Chemotherapy.

[40]  L. Brion,et al.  The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. , 1987, Pediatric clinics of North America.

[41]  L. Saiman,et al.  Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. , 2016, The Journal of antimicrobial chemotherapy.

[42]  G. Bloemberg,et al.  Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum β-lactamase production in clinical Enterobacteriaceae isolates. , 2012, The Journal of antimicrobial chemotherapy.

[43]  Y. Tanigawara,et al.  Optimal dosage regimen of meropenem for pediatric patients based on pharmacokinetic/pharmacodynamic considerations. , 2011, Drug metabolism and pharmacokinetics.

[44]  Masao Kobayashi,et al.  Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients , 2010, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[45]  S. Keam,et al.  Meropenem , 2012, Drugs.

[46]  J. Turnidge The pharmacodynamics of beta-lactams. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.