Nonlinear Scale Space with Spatially Varying Stopping Time

A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.

[1]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[2]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[3]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[4]  Petros Maragos,et al.  Nonlinear Scale-Space Representation with Morphological Levelings , 2000, J. Vis. Commun. Image Represent..

[5]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[6]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[9]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[11]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[12]  A. Ben Hamza,et al.  Image denoising: a nonlinear robust statistical approach , 2001, IEEE Trans. Signal Process..

[13]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[14]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[15]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[16]  Antonin Chambolle,et al.  Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space , 2001, IEEE Trans. Image Process..

[17]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[18]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[19]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[20]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[21]  Pavel Mrázek,et al.  Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, International Journal of Computer Vision.

[22]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[23]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Guillermo Sapiro,et al.  Edges as Outliers: Anisotropic Smoothing Using Local Image Statistics , 1999, Scale-Space.

[25]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[26]  Petros Maragos,et al.  A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[28]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[29]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[30]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[31]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[32]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[35]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[36]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[37]  Tony F. Chan,et al.  Image processing and analysis , 2005 .

[38]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[39]  Eitan Tadmor,et al.  A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions , 2004, Multiscale Model. Simul..

[40]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  Yehoshua Y. Zeevi,et al.  Variational denoising of partly textured images by spatially varying constraints , 2006, IEEE Transactions on Image Processing.

[42]  Charles Kervrann An Adaptive Window Approach for Image Smoothing and Structures Preserving , 2004, ECCV.

[43]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[44]  O. Scherzer,et al.  On Effective Stopping Time Selection for Visco-Plastic Nonlinear BV Diffusion Filters Used in Image Denoising , 2003, SIAM J. Appl. Math..