Performance-based analysis of concrete-filled steel tubular beam–columns, Part I: Theory and algorithms

This paper presents a performance-based analysis (PBA) technique based on fiber element formulations for the nonlinear analysis and performance-based design of thin-walled concrete-filled steel tubular (CFST) beam–columns with local buckling effects. Geometric imperfections, residual stresses and strain hardening of steel tubes and confined concrete models are considered in the PBA technique. Initial local buckling and effective strength/width formulas are incorporated in the PBA program to account for local buckling effects. The progressive local buckling of a thin-walled steel tube filled with concrete is simulated by gradually redistributing normal stresses within the steel tube walls. Performance indices are proposed to quantify the section, axial ductility and curvature ductility performance of thin-walled CFST beam–columns under axial load and biaxial bending. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a thin-walled CFST beam–column section to satisfy equilibrium conditions. The analysis algorithms for thin-walled CFST beam–columns under axial load and uni- and biaxial bending are presented. The PBA program can efficiently generate axial load–strain curves, moment–curvature curves and axial load–moment strength interaction diagrams for thin-walled CFST beam–columns under biaxial loads. The proposed PBA technique allows the designer to analyze and design thin-walled CFST beam–columns made of compact or non-compact steel tubes with any strength grades and normal and high-strength concrete. The verification and applications of the PBA program are given in a companion paper.

[1]  Hanbin Ge,et al.  Strength of Concrete‐Filled Thin‐Walled Steel Box Columns: Experiment , 1992 .

[2]  Lin-Hai Han,et al.  Tests on Stub Columns of Concrete-filled RHS Sections , 2002 .

[3]  H. D. Wright,et al.  Local Stability of Filled and Encased Steel Sections , 1995 .

[4]  S. El-Tawil,et al.  STRENGTH AND DUCTILITY OF CONCRETE ENCASED COMPOSITE COLUMNS , 1999 .

[5]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating interaction buckling , 2003 .

[6]  N. E. Shanmugam,et al.  An analytical model for thin-walled steel box columns with concrete in-fill , 2002 .

[7]  Brian Uy,et al.  Local buckling of steel plates in concrete-filled thin-walled steel tubular beam–columns , 2007 .

[8]  Russell Q. Bridge,et al.  Behaviour of thin-walled steel box sections with or without internal restraint , 1998 .

[9]  Brian Uy,et al.  Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects , 2006 .

[10]  Hiroyuki Nakahara,et al.  Behavior of centrally loaded concrete-filled steel-tube short columns , 2004 .

[11]  Qing Quan Liang Performance-Based Optimization of Structures: Theory and Applications , 2004 .

[12]  N. E. Shanmugam,et al.  Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns , 2002 .

[13]  D. J. Laurie Kennedy,et al.  THE FLEXURAL BEHAVIOUR OF CONCRETE-FILLED HOLLOW STRUCTURAL SECTIONS , 1994 .

[14]  Robert Park,et al.  Strength of Concrete Filled Steel Tubular Columns , 1969 .

[15]  J. Y. Richard Yen QUASI-NEWTON METHOD FOR REINFORCED-CONCRETE COLUMN ANALYSIS AND DESIGN , 1991 .

[16]  Gregory G. Deierlein,et al.  Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns , 1995 .

[17]  Jerome F. Hajjar,et al.  A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip , 1998 .

[18]  Sherif El-Tawil,et al.  Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art , 2004 .

[19]  Richard Sause,et al.  Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam–columns , 2002 .

[20]  Arthur H. Nilson,et al.  Spirally Reinforced High-Strength Concrete Columns , 1984 .

[21]  J. Mander,et al.  Theoretical stress strain model for confined concrete , 1988 .

[22]  M. Bradford,et al.  Local buckling of steel plates in double skin composite panels under biaxial compression and shear , 2004 .

[23]  Cheng-Tzu Thomas Hsu,et al.  Behavior of Biaxially Loaded Concrete-Encased Composite Columns , 1997 .

[24]  N. E. Shanmugam,et al.  THIN-WALLED STEEL BOX COLUMNS UNDER BIAXIAL LOADING , 1989 .

[25]  N. E. Shanmugam,et al.  State of the art report on steel–concrete composite columns , 2001 .

[26]  Stephen P. Schneider,et al.  Axially Loaded Concrete-Filled Steel Tubes , 1998 .

[27]  Y.-K. Yong,et al.  Behavior of Laterally Confined High‐Strength Concrete under Axial Loads , 1988 .

[28]  Masahide Tomii,et al.  Experimental Studies on Concrete-Filled Steel Tubular Stub Columns under Concentric Loading , 1977 .

[29]  Kenji Sakino,et al.  ELASTO-PLASTIC BEHAVIOR OF CONCRETE FILLED SQUARE STEEL TUBULAR BEAM-COLUMNS , 1979 .

[30]  Qing Quan Liang,et al.  Performance-based analysis of concrete-filled steel tubular beam–columns, Part II: Verification and applications , 2009 .

[31]  Richard W. Furlong,et al.  Strength of Steel-Encased Concrete Beam Columns , 1967 .

[32]  Hsuan-Teh Hu,et al.  NONLINEAR ANALYSIS OF AXIALLY LOADED CONCRETE-FILLED TUBE COLUMNS WITH CONFINEMENT EFFECT , 2003 .

[33]  Brian Uy,et al.  Theoretical study on the post-local buckling of steel plates in concrete-filled box columns , 2000 .

[34]  C. Dale Buckner,et al.  Composite Construction in Steel and Concrete , 1958 .

[35]  S. F. Chen,et al.  DESIGN OF BIAXIALLY LOADED SHORT COMPOSITE COLUMNS OF ARBITRARY SECTION , 2001 .

[36]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating local buckling , 2000 .

[37]  Brian Uy,et al.  Local and post-local buckling of concrete filled steel welded box columns , 1998 .

[38]  J. G. Macgregor,et al.  Structural Design Considerations for High-Strength Concrete , 1993 .

[39]  Toshiaki Fujimoto,et al.  BEHAVIOR OF ECCENTRICALLY LOADED CONCRETE-FILLED STEEL TUBULAR COLUMNS , 2004 .

[40]  Ehab Ellobody,et al.  Nonlinear analysis of concrete-filled steel SHS and RHS columns , 2006 .

[41]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[42]  M. Ala Saadeghvaziri,et al.  State of the Art of Concrete-Filled Steel Tubular Columns , 1997 .

[43]  Jerome F. Hajjar,et al.  Representation of Concrete-Filled Steel Tube Cross-Section Strength , 1996 .