On the Computation of the Coefficients of a Modular Form

We give an overview of the recent result by Jean-Marc Couveignes, Bas Edixhoven and Robin de Jong that says that for l prime the mod l Galois representation associated to the discriminant modular form Δ can be computed in time polynomial in l. As a consequence, Ramanujan’s τ(p) for prime numbers p can be computed in time polynomial in logp. The mod l Galois representation occurs in the Jacobian of the modular curve X1(l), whose genus grows quadratically with l. The challenge therefore is to do the necessary computations in time polynomial in the dimension of this Jacobian. The field of definition of the l2 torsion points of which the representation consists is found via a height estimate, obtained from Arakelov theory, combined with numerical approximation. The height estimate implies that the required precision for the approximation grows at most polynomially in l.

[1]  Computing the Ramanujan tau function , 2006 .

[2]  Jean-Pierre Serre,et al.  Formes modulaires de poids $1$ , 1974 .

[3]  H. Koch,et al.  Basic Number Theory , 1997 .

[4]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  T. Willmore Algebraic Geometry , 1973, Nature.

[7]  H. P. F. Swinnerton-Dyer,et al.  On ℓ-adic representations and congruences for coefficients of modular forms (II) , 1977 .

[8]  A. Scholl Motives for modular forms , 1990 .

[9]  Alan G. B. Lauder,et al.  Computing Zeta Functions of Artin-schreier Curves over Finite Fields , 2002, LMS J. Comput. Math..

[10]  E. Ullmo,et al.  Comparaison des métriques d’Arakelov et de Poincaré sur X0(N) , 1995 .

[11]  J. Neukirch Algebraic Number Theory , 1999 .

[12]  Hans Niemeier Definite quadratische formen der dimension 24 und diskriminante 1 , 1973 .

[13]  Jean-Pierre Serre,et al.  Quelques applications du théorème de densité de Chebotarev , 1981 .

[14]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[15]  William Stein,et al.  Modular forms, a computational approach , 2007 .

[16]  David Harvey,et al.  Kedlaya's Algorithm in Larger Characteristic , 2006 .

[17]  J. Pila Frobenius maps of Abelian varieties and finding roots of unity in finite fields , 1990 .

[18]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[19]  J. Cremona Algorithms for Modular Elliptic Curves , 1992 .

[20]  A. Grothendieck,et al.  Cohomologie l-adique et fonctions L , 1977 .

[21]  H. Lenstra,et al.  Approximating rings of integers in number fields par , 2006 .

[22]  Alan G. B. Lauder,et al.  Computing zeta functions of Artin-Schreier curves over finite fields II , 2004, J. Complex..

[23]  Frederik Vercauteren,et al.  Computing Zeta Functions of Hyperelliptic Curves over Finite Fields of Characteristic 2 , 2002, CRYPTO.

[24]  Gerhard Frey,et al.  Arithmetic of Modular Curves and Applications , 1997, Algorithmic Algebra and Number Theory.

[25]  S. J. Edixhoven,et al.  Explicit computations with modular Galois representations , 2005 .

[26]  Jean-Pierre Serre Une interprétation des congruences relatives à la fonction $\tau$ de Ramanujan , 1968 .

[27]  P. Deligne Formes modulaires et representations '-adiques Seminaire Bourbaki, 21e annee, 1968/69, n 355 , 2004 .

[28]  N. Ishibashi,et al.  INTERSECTION THEORY OF DIVISORS ON AN ARITHMETIC SURFACE , 2005 .

[29]  Wouter Castryck,et al.  Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..

[30]  Bas Edixhoven,et al.  The weight in Serre's conjectures on modular forms , 1992 .

[31]  P. Deligne,et al.  Cohomologie Etale: Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2 , 1977 .

[32]  J. Leech Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.

[33]  J. Neukirch,et al.  On automorphic forms and hodge theory , 1981 .

[34]  V. Drinfel'd Two theorems on modular curves , 1973 .

[35]  M. Kisin Modularity of 2-dimensional Galois representations , 2005 .

[36]  Eberhard Freitag,et al.  Etale Cohomology and the Weil Conjecture , 1988 .

[37]  P. Deligne,et al.  Formes modulaires et représentations e -adiques , 1969 .

[38]  Fred Diamond,et al.  A First Course in Modular Forms , 2008 .

[39]  Nicolas Gürel,et al.  An Extension of Kedlaya's Point-Counting Algorithm to Superelliptic Curves , 2001, ASIACRYPT.

[40]  Jean-Pierre Serre,et al.  Représentations linéaires des groupes finis , 1967 .

[41]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[42]  Jean-Pierre Serre,et al.  Lectures On The Mordell-Weil Theorem , 1989 .

[43]  Goro Kato,et al.  Zeta matrices of elliptic curves , 1982 .

[44]  Emil J. Volcheck Computing in the jacobian of a plane algebraic curve , 1994, ANTS.

[45]  H. Carayol,et al.  Uniformisation p-adique des courbes de Shimura : les théorèmes de Čerednik et de Drinfeld , 1991 .

[46]  C. Khare Serre's modularity conjecture: The level one case , 2006 .

[47]  Peter J. Weinberger Finding the Number of Factors of a Polynomial , 1984, J. Algorithms.

[48]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[49]  Jean-Pierre Serre Cours d'arithmétique , 1971 .

[50]  Jean-Pierre Serre Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .

[51]  Takeshi Saito Modular forms and p-adic Hodge theory , 1997 .

[52]  Kenneth A. Ribet,et al.  Galois representations attached to eigenforms with nebentypus , 1977 .

[53]  R. Harley,et al.  An extension of Satoh's algorithm and its implementation , 2000 .

[54]  H. Lenstra,et al.  Algorithms in algebraic number theory , 1992, math/9204234.

[55]  S. Lichtenbaum Duality theorems for curves overP-adic fields , 1969 .

[56]  Alan G. B. Lauder Deformation Theory and The Computation of Zeta Functions , 2004 .

[57]  J. Bosman On the computation of Galois representations associated to level one modular forms , 2007, 0710.1237.

[58]  Daniel Gorenstein,et al.  An arithmetic theory of adjoint plane curves , 1952 .

[59]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[60]  Pierre Parent,et al.  Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres , 1996, alg-geom/9604003.

[61]  Derick Wood,et al.  Theory of computation , 1986 .

[62]  On the semi-simplicity of the $U_p$-operator on modular forms , 1996, alg-geom/9611013.

[63]  Leonard M. Adleman,et al.  Counting Points on Curves and Abelian Varieties Over Finite Fields , 2001, J. Symb. Comput..

[64]  B. Mazur,et al.  Two-dimensional representations in the arithmetic of modular curves , 1991 .

[65]  On the faithfulness of parabolic cohomology as a Hecke module over a finite field , 2005, math/0511115.

[66]  S. David Fonctions thêta et points de torsion des variétés abéliennes , 1991 .

[67]  P. Deligne,et al.  Les Schémas de Modules de Courbes Elliptiques , 1973 .

[68]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[69]  Andreas Enge,et al.  Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.

[70]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[71]  Kiran S. Kedlaya,et al.  Computing Zeta Functions via p-Adic Cohomology , 2004, ANTS.

[72]  René Schoof,et al.  Some Computations with Heeke Rings and Deformation Rings , 2002, Exp. Math..

[73]  Joseph H. Silverman,et al.  The difference between the Weil height and the canonical height on elliptic curves , 1990 .

[74]  Loïc Merel,et al.  Universal Fourier expansions of modular forms , 1994 .

[75]  Jacob Sturm,et al.  On the congruence of modular forms , 1987 .

[76]  John H. Conway,et al.  A characterisation of Leech's lattice , 1969 .

[77]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[78]  L. Szpiro,et al.  Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell , 1985 .

[79]  N. Katz,et al.  Arithmetic moduli of elliptic curves , 1985 .

[80]  Don Zagier,et al.  Modular Functions of One Variable III , 1973 .

[81]  Alan G. B. Lauder,et al.  Computing Zeta Functions of Kummer Curves via Multiplicative Characters , 2003, Found. Comput. Math..

[82]  Crystalline cohomology and GL(2, ℚ) , 1995 .

[83]  G. Faltings,et al.  Lectures on the Arithmetic Riemann-Roch Theorem. , 1992 .

[84]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[85]  Benedict H. Gross,et al.  A tameness criterion for Galois representations associated to modular forms $(\mod p)$ , 1990 .

[86]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[87]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[88]  Gaétan Haché,et al.  Computation in Algebraic Function Fields for Effective Construction of Algebraic-Geometric Codes , 1995, AAECC.

[89]  G. Frey,et al.  A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .

[90]  Laurent Moret-Bailly La formule de Noether pour les surfaces arithmétiques , 1989 .

[91]  André Weil,et al.  Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen , 1967 .

[92]  P. D. Val,et al.  Elliptic functions and elliptic curves , 1973 .

[93]  Ju. Manin,et al.  PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES , 1972 .

[94]  Steven D. Galbraith,et al.  Arithmetic on superelliptic curves , 2002 .

[95]  P. Deligne,et al.  Groupes de monodromie en geometrie algebrique , 1972 .

[96]  Gerhard Frey,et al.  On Artin's conjecture for odd 2-dimensional representations , 1994 .

[97]  Henri Carayol,et al.  Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert , 1986 .

[98]  Horst G. Zimmer,et al.  On the difference of the Weil height and the Néron-Tate height , 1976 .

[99]  Gerd Faltings,et al.  Calculus on arithmetic surfaces , 1984 .

[100]  R. Lercier,et al.  A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .

[101]  K. Kedlaya Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.

[102]  S. David,et al.  Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes II , 2002 .

[103]  Hendrik Hubrechts,et al.  Point Counting in Families of Hyperelliptic Curves , 2006, Found. Comput. Math..

[104]  Henry Cohn,et al.  The densest lattice in twenty-four dimensions , 2004, math/0408174.

[105]  P. Hriljac HEIGHTS AND ARAKELOV'S INTERSECTION THEORY , 1985 .

[106]  Eric Bach,et al.  The hardness of computing an eigenform , 2007, 0708.1192.

[107]  K. Ribet On ℓ-adic representations attached to modular forms , 1975 .

[108]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.

[109]  M. Dickinson On the modularity of certain 2-adic Galois representations , 2001 .

[110]  J. Kramer,et al.  Bounds on canonical Green's functions , 2006, Compositio Mathematica.

[111]  C. Soulé,et al.  Lectures on Arakelov Geometry , 1992 .

[112]  Alan G. B. Lauder,et al.  Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.

[113]  A. Atkin,et al.  Modular Forms , 2017 .

[114]  J. Milne Elliptic Curves , 2020 .

[115]  David S. Smith HISTORICAL INTRODUCTION , 2021, The Gnostic Scriptures.

[116]  A. Enge,et al.  Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.

[117]  M. Ram Murty,et al.  Euclidean Rings of Algebraic Integers , 2004, Canadian Journal of Mathematics.