On the Computation of the Coefficients of a Modular Form
暂无分享,去创建一个
[1] Computing the Ramanujan tau function , 2006 .
[2] Jean-Pierre Serre,et al. Formes modulaires de poids $1$ , 1974 .
[3] H. Koch,et al. Basic Number Theory , 1997 .
[4] L. Dickson. Linear Groups, with an Exposition of the Galois Field Theory , 1958 .
[5] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[6] T. Willmore. Algebraic Geometry , 1973, Nature.
[7] H. P. F. Swinnerton-Dyer,et al. On ℓ-adic representations and congruences for coefficients of modular forms (II) , 1977 .
[8] A. Scholl. Motives for modular forms , 1990 .
[9] Alan G. B. Lauder,et al. Computing Zeta Functions of Artin-schreier Curves over Finite Fields , 2002, LMS J. Comput. Math..
[10] E. Ullmo,et al. Comparaison des métriques d’Arakelov et de Poincaré sur X0(N) , 1995 .
[11] J. Neukirch. Algebraic Number Theory , 1999 .
[12] Hans Niemeier. Definite quadratische formen der dimension 24 und diskriminante 1 , 1973 .
[13] Jean-Pierre Serre,et al. Quelques applications du théorème de densité de Chebotarev , 1981 .
[14] 志村 五郎,et al. Introduction to the arithmetic theory of automorphic functions , 1971 .
[15] William Stein,et al. Modular forms, a computational approach , 2007 .
[16] David Harvey,et al. Kedlaya's Algorithm in Larger Characteristic , 2006 .
[17] J. Pila. Frobenius maps of Abelian varieties and finding roots of unity in finite fields , 1990 .
[18] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[19] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[20] A. Grothendieck,et al. Cohomologie l-adique et fonctions L , 1977 .
[21] H. Lenstra,et al. Approximating rings of integers in number fields par , 2006 .
[22] Alan G. B. Lauder,et al. Computing zeta functions of Artin-Schreier curves over finite fields II , 2004, J. Complex..
[23] Frederik Vercauteren,et al. Computing Zeta Functions of Hyperelliptic Curves over Finite Fields of Characteristic 2 , 2002, CRYPTO.
[24] Gerhard Frey,et al. Arithmetic of Modular Curves and Applications , 1997, Algorithmic Algebra and Number Theory.
[25] S. J. Edixhoven,et al. Explicit computations with modular Galois representations , 2005 .
[26] Jean-Pierre Serre. Une interprétation des congruences relatives à la fonction $\tau$ de Ramanujan , 1968 .
[27] P. Deligne. Formes modulaires et representations '-adiques Seminaire Bourbaki, 21e annee, 1968/69, n 355 , 2004 .
[28] N. Ishibashi,et al. INTERSECTION THEORY OF DIVISORS ON AN ARITHMETIC SURFACE , 2005 .
[29] Wouter Castryck,et al. Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..
[30] Bas Edixhoven,et al. The weight in Serre's conjectures on modular forms , 1992 .
[31] P. Deligne,et al. Cohomologie Etale: Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2 , 1977 .
[32] J. Leech. Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.
[33] J. Neukirch,et al. On automorphic forms and hodge theory , 1981 .
[34] V. Drinfel'd. Two theorems on modular curves , 1973 .
[35] M. Kisin. Modularity of 2-dimensional Galois representations , 2005 .
[36] Eberhard Freitag,et al. Etale Cohomology and the Weil Conjecture , 1988 .
[37] P. Deligne,et al. Formes modulaires et représentations e -adiques , 1969 .
[38] Fred Diamond,et al. A First Course in Modular Forms , 2008 .
[39] Nicolas Gürel,et al. An Extension of Kedlaya's Point-Counting Algorithm to Superelliptic Curves , 2001, ASIACRYPT.
[40] Jean-Pierre Serre,et al. Représentations linéaires des groupes finis , 1967 .
[41] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[42] Jean-Pierre Serre,et al. Lectures On The Mordell-Weil Theorem , 1989 .
[43] Goro Kato,et al. Zeta matrices of elliptic curves , 1982 .
[44] Emil J. Volcheck. Computing in the jacobian of a plane algebraic curve , 1994, ANTS.
[45] H. Carayol,et al. Uniformisation p-adique des courbes de Shimura : les théorèmes de Čerednik et de Drinfeld , 1991 .
[46] C. Khare. Serre's modularity conjecture: The level one case , 2006 .
[47] Peter J. Weinberger. Finding the Number of Factors of a Polynomial , 1984, J. Algorithms.
[48] A. Grothendieck,et al. Théorie des Topos et Cohomologie Etale des Schémas , 1972 .
[49] Jean-Pierre Serre. Cours d'arithmétique , 1971 .
[50] Jean-Pierre Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .
[51] Takeshi Saito. Modular forms and p-adic Hodge theory , 1997 .
[52] Kenneth A. Ribet,et al. Galois representations attached to eigenforms with nebentypus , 1977 .
[53] R. Harley,et al. An extension of Satoh's algorithm and its implementation , 2000 .
[54] H. Lenstra,et al. Algorithms in algebraic number theory , 1992, math/9204234.
[55] S. Lichtenbaum. Duality theorems for curves overP-adic fields , 1969 .
[56] Alan G. B. Lauder. Deformation Theory and The Computation of Zeta Functions , 2004 .
[57] J. Bosman. On the computation of Galois representations associated to level one modular forms , 2007, 0710.1237.
[58] Daniel Gorenstein,et al. An arithmetic theory of adjoint plane curves , 1952 .
[59] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[60] Pierre Parent,et al. Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres , 1996, alg-geom/9604003.
[61] Derick Wood,et al. Theory of computation , 1986 .
[62] On the semi-simplicity of the $U_p$-operator on modular forms , 1996, alg-geom/9611013.
[63] Leonard M. Adleman,et al. Counting Points on Curves and Abelian Varieties Over Finite Fields , 2001, J. Symb. Comput..
[64] B. Mazur,et al. Two-dimensional representations in the arithmetic of modular curves , 1991 .
[65] On the faithfulness of parabolic cohomology as a Hecke module over a finite field , 2005, math/0511115.
[66] S. David. Fonctions thêta et points de torsion des variétés abéliennes , 1991 .
[67] P. Deligne,et al. Les Schémas de Modules de Courbes Elliptiques , 1973 .
[68] J. Tate. Endomorphisms of abelian varieties over finite fields , 1966 .
[69] Andreas Enge,et al. Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.
[70] Jeffrey Shallit,et al. Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.
[71] Kiran S. Kedlaya,et al. Computing Zeta Functions via p-Adic Cohomology , 2004, ANTS.
[72] René Schoof,et al. Some Computations with Heeke Rings and Deformation Rings , 2002, Exp. Math..
[73] Joseph H. Silverman,et al. The difference between the Weil height and the canonical height on elliptic curves , 1990 .
[74] Loïc Merel,et al. Universal Fourier expansions of modular forms , 1994 .
[75] Jacob Sturm,et al. On the congruence of modular forms , 1987 .
[76] John H. Conway,et al. A characterisation of Leech's lattice , 1969 .
[77] R. Schoof. Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .
[78] L. Szpiro,et al. Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell , 1985 .
[79] N. Katz,et al. Arithmetic moduli of elliptic curves , 1985 .
[80] Don Zagier,et al. Modular Functions of One Variable III , 1973 .
[81] Alan G. B. Lauder,et al. Computing Zeta Functions of Kummer Curves via Multiplicative Characters , 2003, Found. Comput. Math..
[82] Crystalline cohomology and GL(2, ℚ) , 1995 .
[83] G. Faltings,et al. Lectures on the Arithmetic Riemann-Roch Theorem. , 1992 .
[84] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[85] Benedict H. Gross,et al. A tameness criterion for Galois representations associated to modular forms $(\mod p)$ , 1990 .
[86] C. Curtis,et al. Representation theory of finite groups and associated algebras , 1962 .
[87] Peter J. Weinberger,et al. Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.
[88] Gaétan Haché,et al. Computation in Algebraic Function Fields for Effective Construction of Algebraic-Geometric Codes , 1995, AAECC.
[89] G. Frey,et al. A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .
[90] Laurent Moret-Bailly. La formule de Noether pour les surfaces arithmétiques , 1989 .
[91] André Weil,et al. Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen , 1967 .
[92] P. D. Val,et al. Elliptic functions and elliptic curves , 1973 .
[93] Ju. Manin,et al. PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES , 1972 .
[94] Steven D. Galbraith,et al. Arithmetic on superelliptic curves , 2002 .
[95] P. Deligne,et al. Groupes de monodromie en geometrie algebrique , 1972 .
[96] Gerhard Frey,et al. On Artin's conjecture for odd 2-dimensional representations , 1994 .
[97] Henri Carayol,et al. Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert , 1986 .
[98] Horst G. Zimmer,et al. On the difference of the Weil height and the Néron-Tate height , 1976 .
[99] Gerd Faltings,et al. Calculus on arithmetic surfaces , 1984 .
[100] R. Lercier,et al. A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .
[101] K. Kedlaya. Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.
[102] S. David,et al. Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes II , 2002 .
[103] Hendrik Hubrechts,et al. Point Counting in Families of Hyperelliptic Curves , 2006, Found. Comput. Math..
[104] Henry Cohn,et al. The densest lattice in twenty-four dimensions , 2004, math/0408174.
[105] P. Hriljac. HEIGHTS AND ARAKELOV'S INTERSECTION THEORY , 1985 .
[106] Eric Bach,et al. The hardness of computing an eigenform , 2007, 0708.1192.
[107] K. Ribet. On ℓ-adic representations attached to modular forms , 1975 .
[108] Alfred Menezes,et al. Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.
[109] M. Dickinson. On the modularity of certain 2-adic Galois representations , 2001 .
[110] J. Kramer,et al. Bounds on canonical Green's functions , 2006, Compositio Mathematica.
[111] C. Soulé,et al. Lectures on Arakelov Geometry , 1992 .
[112] Alan G. B. Lauder,et al. Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.
[113] A. Atkin,et al. Modular Forms , 2017 .
[114] J. Milne. Elliptic Curves , 2020 .
[115] David S. Smith. HISTORICAL INTRODUCTION , 2021, The Gnostic Scriptures.
[116] A. Enge,et al. Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.
[117] M. Ram Murty,et al. Euclidean Rings of Algebraic Integers , 2004, Canadian Journal of Mathematics.