A regularized Lagrangian finite point method for the simulation of incompressible viscous flows

In this paper we present a regularized Lagrangian finite point method (RLFPM) for the numerical simulation of incompressible viscous flows. A Lagrangian finite point scheme is applied to the projection method for the incompressible Navier-Stokes equations. The approximation of spatial derivatives is obtained by the weighted least squares method. The pressure Poisson equation with Neumann boundary condition is solved by a stabilized finite point method. A key aspect of the present approach is the periodic redistribution of the particle locations, which are being distorted by the flow. Again, weighted least squares approximation is implemented to interpolate the properties of the old particles onto the new particle locations. With the proposed regularization technique, problems associated with the flow-induced irregularity of particle distribution in the Lagrangian finite point scheme are circumvented. Three numerical examples, Taylor-Green flow, lid-driven flow in a cavity and flow through a periodic lattice of cylinders, are presented to validate the proposed methodology. The problem of extra diffusion caused by regularization is discussed. The results demonstrate that RLFPM is able to perform accurate and stable simulations of incompressible viscous flows.

[1]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[2]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[3]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[4]  Antonio Huerta,et al.  Stabilized updated Lagrangian corrected SPH for explicit dynamic problems , 2007 .

[5]  Rainald Löhner,et al.  A finite point method for compressible flow , 2002 .

[6]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[7]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[8]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[9]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[10]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[11]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[12]  Bertrand Alessandrini,et al.  An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..

[13]  Sudarshan Tiwari,et al.  Modeling of two-phase flows with surface tension by finite pointset method (FPM) , 2007 .

[14]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[15]  S. Hess,et al.  Viscoelastic flows studied by smoothed particle dynamics , 2002 .

[16]  Fabrice Colin,et al.  Computing a null divergence velocity field using smoothed particle hydrodynamics , 2006, J. Comput. Phys..

[17]  Eugenio Oñate,et al.  Simple modifications for stabilization of the finite point method , 2005 .

[18]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[19]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[20]  D. Hietel,et al.  A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures , 2007 .

[21]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[22]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[23]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[24]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[25]  Guirong Liu,et al.  Modeling incompressible flows using a finite particle method , 2005 .

[26]  Luc Oger,et al.  Smoothed particle hydrodynamics for cohesive grains , 1999 .

[27]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. , 2004, Technology and health care : official journal of the European Society for Engineering and Medicine.

[28]  H. Ruder,et al.  Smoothed Particle Hydrodynamics: Physical Viscosity and the Simulation of Accretion Disks , 1994 .

[29]  G. R. Johnson,et al.  NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .

[30]  Eugenio Oñate,et al.  A mesh-free finite point method for advective-diffusive transport and fluid flow problems , 1998 .

[31]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[32]  Rade Vignjevic,et al.  SPH in a Total Lagrangian Formalism , 2006 .

[33]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[34]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[35]  Pep Español,et al.  Incompressible smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[36]  J. K. Chen,et al.  A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems , 2000 .

[37]  R. G. Owens,et al.  A numerical study of the SPH method for simulating transient viscoelastic free surface flows , 2006 .

[38]  Romesh C. Batra,et al.  Modified smoothed particle hydrodynamics method and its application to transient problems , 2004 .

[39]  J. Owen,et al.  Adaptive Smoothed Particle Hydrodynamics: Methodology. II. , 1995, astro-ph/9512078.

[40]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[41]  Azzeddine Soulaïmani,et al.  A stabilized SPH method for inviscid shallow water flows , 2005 .

[42]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[43]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[44]  C. Ancey,et al.  Improved SPH methods for simulating free surface flows of viscous fluids , 2009 .

[45]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[46]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[47]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[48]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[49]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[50]  W. Benz,et al.  Simulations of brittle solids using smooth particle hydrodynamics , 1995 .

[51]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[52]  J. Michael Owen,et al.  Adaptive smoothed particle hydrodynamics, with application to cosmology: Methodology , 1996 .

[53]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[54]  S. Koshizuka A particle method for incompressible viscous flow with fluid fragmentation , 1995 .

[55]  Larry D. Libersky,et al.  Smooth particle hydrodynamics with strength of materials , 1991 .

[56]  Eugenio Oñate,et al.  A finite point method for incompressible flow problems , 2000 .

[57]  J. Kuhnert,et al.  Finite Pointset Method Based on the Projection Method for Simulations of the Incompressible Navier-Stokes Equations , 2003 .

[58]  Konstantinos Boulouchos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of laminar chemically reactive flows , 2003 .

[59]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[60]  S. Dong,et al.  Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows , 2005 .

[61]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[62]  Didier Sornette,et al.  Solid friction at high sliding velocities: An explicit three‐dimensional dynamical smoothed particle hydrodynamics approach , 1999 .

[63]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[64]  Jacek Pozorski,et al.  SPH computation of incompressible viscous flows , 2002 .

[65]  Anthony Peter Whitworth,et al.  A new prescription for viscosity in smoothed particle hydrodynamics. , 1996 .

[66]  Mahesh Prakash,et al.  Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.