Review of Tm and Ho materials; spectroscopy and lasers
暂无分享,去创建一个
[1] U. Singh,et al. 1 J/pulse Q-switched 2 microm solid-state laser. , 2006, Optics letters.
[2] G. M. Hale,et al. Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.
[3] J. M. Sousa,et al. Simulation of laser dynamics and active Q-switching in Tm,Ho : YAG and Tm : YAG lasers , 1996 .
[4] Evan P. Chicklis,et al. 50-mJ, Q-switched, 2.09-µm holmium laser resonantly pumped by a diode-pumped 1.9-µm thulium laser , 2003 .
[5] D. L. Dexter. A Theory of Sensitized Luminescence in Solids , 1953 .
[6] Norman P. Barnes,et al. On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence , 1997 .
[7] G. Bourdet,et al. Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser. , 1999, Applied optics.
[8] Edward W. Johnson,et al. ASWEPS Shipboard System-A New Concept in the Automated Collection of Oceanographic Data , 1962, Proceedings of the IRE.
[9] L. Johnson,et al. EFFICIENT, HIGH‐POWER COHERENT EMISSION FROM Ho3+ IONS IN YTTRIUM ALUMINUM GARNET, ASSISTED BY ENERGY TRANSFER , 1966 .
[10] W. Clarkson,et al. Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser. , 2004, Optics letters.
[11] K. Murray,et al. Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison. , 1997, Applied optics.
[12] E. Chicklis,et al. High‐Efficiency Room‐Temperature 2.06‐μm Laser Using Sensitized Ho3+:YLF , 1971 .
[13] Milan R. Kokta,et al. Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers , 1992 .
[14] N. Saito,et al. Computational model for operation of 2 mum co-doped Tm,Ho solid state lasers. , 2007, Optics express.
[15] G. Rustad,et al. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion , 1996 .
[16] Nicolaas Bloembergen,et al. Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War , 2001 .
[17] J. Pelon,et al. Modeling of Tm, Ho:YAG and Tm, Ho:YLF 2- mum Lasers and Calculation of Extractable Energies. , 1998, Applied optics.
[18] Norman P. Barnes,et al. The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF , 2000 .
[19] Norman P. Barnes,et al. Ho:Ho upconversion: applications to Ho lasers , 2003 .
[20] Norman P. Barnes,et al. Ho:Tm lasers. I. Theoretical , 1996 .
[21] M. Schellhorn,et al. Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser , 2006 .
[22] W. A. Clarkson,et al. Efficient Ho : YAG laser pumped by a cladding-pumped tunable Tm : silica-fibre laser , 2004 .
[23] G. Huber,et al. cw double cross pumping of the 5I7–5I8 laser transition in Ho3+‐doped garnets , 1986 .
[24] E. Chicklis,et al. High-power/high-brightness diode-pumped 1.9-/spl mu/m thulium and resonantly pumped 2.1-/spl mu/m holmium lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[25] Peter F. Moulton,et al. High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser , 2005 .
[26] Th. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .
[27] W. J. Rodriguez,et al. Spectroscopic and lasing properties of Ho:Tm:LuAG. , 1993, Optics letters.
[28] U. Singh,et al. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4 , 2004 .
[29] S. Henderson,et al. Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.
[30] Satoshi Wada,et al. Numerical simulation and optimization of Q-switched 2 mum Tm,Ho:YLF laser. , 2007, Optics express.
[31] Peter F. Moulton,et al. High-Power, High-Energy Diode-Pumped Tm:YLF-Ho:YLF-ZGP Laser System , 2003 .
[32] Norman P. Barnes,et al. Ho:Tm:YLF laser amplifiers , 1996 .
[33] Clifford R. Pollock,et al. Advanced Solid-state Lasers , 1996 .