An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems

In this paper an efficient method based on the Adomian decomposition for computing the eigenelements of fourth-order Sturm-Liouville boundary value problems is developed. Numerical examples show that the method proposed is easy to implement and produces accurate results.

[1]  Anton Zettl,et al.  Computing Eigenvalues of Singular Sturm-Liouville Problems , 1991 .

[2]  Lawrence F. Shampine,et al.  Automatic Solution of the Sturm-Liouville Problem , 1978, TOMS.

[3]  George Adomian,et al.  Generalization of adomian polynomials to functions of several variables , 1992 .

[4]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[5]  Y. Cherruault,et al.  Practical formulae for the calculus of multivariable adomian polynomials , 1995 .

[6]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[7]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[8]  Basem S. Attili,et al.  The Adomian decomposition method for computing eigenelements of Sturm-Liouville two point boundary value problems , 2005, Appl. Math. Comput..

[9]  Marco Marletta,et al.  Oscillation theory and numerical solution of fourth-order Sturm—Liouville problems , 1995 .

[10]  Leon Greenberg,et al.  An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues , 1991 .

[11]  Marco Marletta,et al.  Numerical methods for higher order Sturm-Liouville problems , 2000 .

[12]  I. H. Abdel-Halim Hassan,et al.  Different applications for the differential transformation in the differential equations , 2002, Appl. Math. Comput..

[13]  Marco Marletta,et al.  Algorithm 775: the code SLEUTH for solving fourth-order Sturm-Liouville problems , 1997, TOMS.