Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods

This is the accepted version of the following article:Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods,Geographical Analysis 2013, 45(2):150-179, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/gean.12008/abstract. © 2013 The Ohio State University

[1]  Stephan R. Sain,et al.  spam: A Sparse Matrix R Package with Emphasis on MCMC Methods for Gaussian Markov Random Fields , 2010 .

[2]  Ali Abul Gasim First-order autoregressive models: a method for obtaining eigenvalues for weighting matrices , 1988 .

[3]  Roger Bivand,et al.  Exploring Spatial Data Analysis Techniques Using R: The Case of Observations with No Neighbors , 2004 .

[4]  R. J. Martin Approximations to the determinant term in gaussian maximum likelihood estimation of some spatial models , 1992 .

[5]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[6]  James P. LeSage,et al.  Chebyshev approximation of log-determinants of spatial weight matrices , 2004, Comput. Stat. Data Anal..

[7]  Timothy A. Davis,et al.  Modifying a Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..

[8]  R. Pace,et al.  Sparse spatial autoregressions , 1997 .

[9]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[10]  Luc Anselin,et al.  An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice , 2009, Comput. Stat. Data Anal..

[11]  Daniel A. Griffith,et al.  Faster maximum likelihood estimation of very large spatial autoregressive models: an extension of the Smirnov–Anselin result , 2004 .

[12]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[13]  D. Griffith Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses , 2000 .

[14]  Noel Cressie,et al.  One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic , 2012, J. Multivar. Anal..

[15]  Timothy A. Davis,et al.  Algorithm 8 xx : a concise sparse Cholesky factorization package , 2004 .

[16]  D. Griffith,et al.  Trade-offs associated with normalizing constant computational simplifications for estimating spatial statistical models , 1995 .

[17]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[18]  L. Anselin,et al.  Fast maximum likelihood estimation of very large spatial autoregression models: a characteristic polynomial approach , 2001 .

[19]  Youngihn Kho,et al.  GeoDa: An Introduction to Spatial Data Analysis , 2006 .

[20]  Gottfried Tappeiner,et al.  Performance contest between MLE and GMM for huge spatial autoregressive models , 2008 .

[21]  Daniel A. Griffith,et al.  A Variance-Stabilizing Coding Scheme for Spatial Link Matrices , 1999 .

[22]  James P. LeSage,et al.  A sampling approach to estimate the log determinant used in spatial likelihood problems , 2009, J. Geogr. Syst..

[23]  Roger Bivand Regression Modeling with Spatial Dependence: An Application of Some Class Selection and Estimation Methods , 2010 .

[24]  Ronald P. Barry,et al.  Quick Computation of Spatial Autoregressive Estimators , 2010 .

[25]  R. Kelley Pace,et al.  Fast spatial estimation , 1997 .

[26]  Daniel A. Griffith,et al.  Approximating the Inertia of the Adjacency Matrix of a Connected Planar Graph That Is the Dual of a Geographic Surface Partitioning , 2011 .

[27]  Daniel A. Griffith,et al.  Extreme eigenfunctions of adjacency matrices for planar graphs employed in spatial analyses , 2004 .

[28]  Y. Zhang,et al.  Approximate implementation of the logarithm of the matrix determinant in Gaussian process regression , 2007 .

[29]  Barry W. Peyton,et al.  Block Sparse Cholesky Algorithms on Advanced Uniprocessor Computers , 1991, SIAM J. Sci. Comput..

[30]  H. Kelejian,et al.  Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances , 2008, Journal of econometrics.

[31]  Ronald P. Barry,et al.  Monte Carlo estimates of the log determinant of large sparse matrices , 1999 .