Node Classification for Signed Social Networks Using Diffuse Interface Methods

Signed networks contain both positive and negative kinds of interactions like friendship and enmity. The task of node classification in non-signed graphs has proven to be beneficial in many real world applications, yet extensions to signed networks remain largely unexplored. In this paper we introduce the first analysis of node classification in signed social networks via diffuse interface methods based on the Ginzburg-Landau functional together with different extensions of the graph Laplacian to signed networks. We show that blending the information from both positive and negative interactions leads to performance improvement in real signed social networks, consistently outperforming the current state of the art.

[1]  Harald Garcke,et al.  Allen-Cahn systems with volume constraints , 2008 .

[2]  Inderjit S. Dhillon,et al.  Scalable clustering of signed networks using balance normalized cut , 2012, CIKM.

[3]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[4]  Charu C. Aggarwal,et al.  A Survey of Signed Network Mining in Social Media , 2015, ACM Comput. Surv..

[5]  Matthias Hein,et al.  Community detection in networks via nonlinear modularity eigenvectors , 2017, SIAM J. Appl. Math..

[6]  Wei Tang,et al.  Clustering with Multiple Graphs , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[7]  Martin Stoll,et al.  Fast Solvers for Cahn-Hilliard Inpainting , 2014, SIAM J. Imaging Sci..

[8]  J. Davis Clustering and Structural Balance in Graphs , 1967 .

[9]  Shiping Liu,et al.  Multi-way dual Cheeger constants and spectral bounds of graphs , 2014, 1401.3147.

[10]  Michelangelo Ceci,et al.  Ensemble Learning for Multi-Type Classification in Heterogeneous Networks , 2018, IEEE Transactions on Knowledge and Data Engineering.

[11]  Mikhail Belkin,et al.  Regularization and Semi-supervised Learning on Large Graphs , 2004, COLT.

[12]  Stephen J. Wright,et al.  Dissimilarity in Graph-Based Semi-Supervised Classification , 2007, AISTATS.

[13]  Jung-Il Choi,et al.  Fast local image inpainting based on the Allen-Cahn model , 2015, Digit. Signal Process..

[14]  Arjuna Flenner,et al.  Diffuse Interface Models on Graphs for Classification of High Dimensional Data , 2012, Multiscale Model. Simul..

[15]  Mahdi Jalili,et al.  Ranking Nodes in Signed Social Networks , 2014, Social Network Analysis and Mining.

[16]  Mihai Cucuringu,et al.  An MBO scheme for clustering and semi-supervised clustering of signed networks , 2019, Communications in Mathematical Sciences.

[17]  Andrea L. Bertozzi,et al.  Convergence Analysis of the Graph Allen-Cahn Scheme , 2016 .

[18]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[19]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[20]  Yang Xiang,et al.  SNE: Signed Network Embedding , 2017, PAKDD.

[21]  Jean Gallier,et al.  Spectral Theory of Unsigned and Signed Graphs. Applications to Graph Clustering: a Survey , 2016, ArXiv.

[22]  Christopher J. C. Burges,et al.  Spectral clustering and transductive learning with multiple views , 2007, ICML '07.

[23]  Charu C. Aggarwal,et al.  Signed Network Embedding in Social Media , 2017, SDM.

[24]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[25]  K. E. Read,et al.  Cultures of the Central Highlands, New Guinea , 1954, Southwestern Journal of Anthropology.

[26]  Christos Faloutsos,et al.  Edge Weight Prediction in Weighted Signed Networks , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[27]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[28]  Christian Bauckhage,et al.  The slashdot zoo: mining a social network with negative edges , 2009, WWW.

[29]  Inderjit S. Dhillon,et al.  Low rank modeling of signed networks , 2012, KDD.

[30]  Dean P. Foster,et al.  Semantic Word Clusters Using Signed Spectral Clustering , 2017, ACL.

[31]  F. Harary,et al.  STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY1 , 1977 .

[32]  Jure Leskovec,et al.  Predicting positive and negative links in online social networks , 2010, WWW '10.

[33]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[34]  Charu C. Aggarwal,et al.  Node Classification in Signed Social Networks , 2016, SDM.

[35]  Matthias Hein,et al.  The Power Mean Laplacian for Multilayer Graph Clustering , 2018, AISTATS.

[36]  Peter Davies,et al.  SPONGE: A generalized eigenproblem for clustering signed networks , 2019, AISTATS.

[37]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[38]  Patrick Doreian,et al.  Partitioning signed social networks , 2009, Soc. Networks.

[39]  George T. Cantwell,et al.  Balance in signed networks , 2018, Physical review. E.

[40]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[41]  F. Harary On the notion of balance of a signed graph. , 1953 .

[42]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[43]  Matthias Hein,et al.  Clustering Signed Networks with the Geometric Mean of Laplacians , 2016, NIPS.

[44]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[45]  Martin Stoll,et al.  A Fractional Inpainting Model Based on the Vector-Valued Cahn-Hilliard Equation , 2015, SIAM J. Imaging Sci..

[46]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[47]  Jiliang Tang,et al.  Signed Graph Convolutional Networks , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[48]  Matthias Hein,et al.  Spectral Clustering of Signed Graphs via Matrix Power Means , 2019, ICML.

[49]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[50]  Harald Garcke,et al.  A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..

[51]  Steffen Klamt,et al.  Generalizing Diffuse Interface Methods on Graphs: Nonsmooth Potentials and Hypergraphs , 2016, SIAM J. Appl. Math..

[52]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[53]  Andrew V. Knyazev,et al.  On spectral partitioning of signed graphs , 2017, CSC.

[54]  A. Bertozzi,et al.  Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs , 2013, 1307.0045.

[55]  Madhav Desai,et al.  A characterization of the smallest eigenvalue of a graph , 1994, J. Graph Theory.

[56]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[57]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[58]  V. S. Subrahmanian,et al.  VEWS: A Wikipedia Vandal Early Warning System , 2015, KDD.

[59]  Charu C. Aggarwal,et al.  Attributed Signed Network Embedding , 2017, CIKM.

[60]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[61]  Claudio Gentile,et al.  On the Troll-Trust Model for Edge Sign Prediction in Social Networks , 2016, AISTATS.

[62]  Arjuna Flenner,et al.  Diffuse interface methods for multiclass segmentation of high-dimensional data , 2014, Appl. Math. Lett..

[63]  B. Schölkopf,et al.  A Regularization Framework for Learning from Graph Data , 2004, ICML 2004.

[64]  Fan Chung Graham,et al.  Dirichlet PageRank and Ranking Algorithms Based on Trust and Distrust , 2013, Internet Math..

[65]  Jiliang Tang,et al.  Signed Graph Convolutional Network , 2018, ArXiv.

[66]  Arjuna Flenner,et al.  Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Junghwan Kim,et al.  SIDE: Representation Learning in Signed Directed Networks , 2018, WWW.

[68]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[69]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[70]  James F. Blowey,et al.  Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .

[71]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Sahin Albayrak,et al.  Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization , 2010, SDM.