Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires.

Tin dioxide (SnO(2)) nanowires exhibit a strong visible photoluminescence that is not observed in bulk crystalline SnO(2). To explain such effect, oxygen vacancies are often invoked without clarifying if they represent the direct origin of luminescence or if their presence triggers other radiative processes. Here we report an investigation of the nature of the visible light emission in SnO(2) nanowires, showing that both experimental and theoretical ab initio analyses support the first hypothesis. On the basis of photoluminescence quenching analysis and of first-principles calculations we show that surface bridging oxygen vacancies in SnO(2) lead to formation of occupied and empty surface bands whose transition energies are in strong agreement with luminescence features and whose luminescence activity can be switched off by surface adsorption of oxidizing molecules. Finally, we discuss how such findings may explain the decoupling between "electrical-active" and "optical-active" states in SnO(2) gas nanosensors [G. Faglia et al., Appl. Phys. Lett. 86, 011923 (2005)].

[1]  Miao Zhang,et al.  Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients , 2006 .

[2]  C. Baratto,et al.  Metal oxide nanocrystals for gas sensing , 2004, Proceedings of IEEE Sensors, 2004..

[3]  Giorgio Sberveglieri,et al.  Defect study of SnO2 nanostructures by cathodoluminescence analysis: Application to nanowires , 2007 .

[4]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[5]  L. Lazzarini,et al.  Cathodoluminescence characterization of SnO2 nanoribbons grown by vapor transport technique , 2006 .

[6]  Vincenzo Guidi,et al.  Electrical Properties of Tin Dioxide Two-Dimensional Nanostructures , 2004 .

[7]  L. Lazzarini,et al.  Morphological, structural and optical study of quasi‐1D SnO2 nanowires and nanobelts , 2005 .

[8]  M. Gillan,et al.  Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations , 2000 .

[9]  Miao Zhang,et al.  Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts , 2006, Nanotechnology.

[10]  B. Valeur,et al.  Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential) , 2005 .

[11]  Meilin Liu,et al.  Well‐Aligned “Nano‐Box‐Beams” of SnO2 , 2004 .

[12]  Joseph L. Birman,et al.  Electronic States and Optical Transitions in Solids , 1976 .

[13]  D. Ninno,et al.  Density functional study of oxygen vacancies at the SnO 2 surface and subsurface sites , 2008, 0804.3460.

[14]  Jin Sung Park,et al.  Photoluminescence properties of SnO2 thin films grown by thermal CVD , 2003 .

[15]  J. Marley,et al.  Electrical Properties of Stannic Oxide Single Crystals , 1965 .

[16]  Mario De Stefano,et al.  The Gas‐Detection Properties of Light‐Emitting Diatoms , 2008 .

[17]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[18]  Matteo Ferroni,et al.  Synthesis and characterization of semiconducting nanowires for gas sensing , 2007 .

[19]  Zhong Lin Wang,et al.  Growth and structure evolution of novel tin oxide diskettes. , 2002, Journal of the American Chemical Society.

[20]  N. Ramgir,et al.  Shape Selective Synthesis of Unusual Nanobipyramids, Cubes, and Nanowires of RuO2: SnO2 , 2004 .

[21]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[22]  I. Imai,et al.  Optical and Electrical Properties of Tin Oxide Films , 1958 .

[23]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[24]  Alex Zunger,et al.  Origins of coexistence of conductivity and transparency in SnO(2). , 2002, Physical review letters.

[25]  U. Pal,et al.  Cathodoluminescence defect characterization of hydrothermally grown SnO2 nanoparticles , 2008 .

[26]  Giorgio Sberveglieri,et al.  Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts , 2005 .

[27]  P. Maddalena,et al.  Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts , 2006 .

[28]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[29]  Jian-ming Hong,et al.  Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires , 2006 .

[30]  E. W. Williams,et al.  Chapter 4 Photoluminescence I: Theory , 1972 .

[31]  L. D. Haart,et al.  The observation of exciton emission from rutile single crystals , 1986 .

[32]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[33]  I. Tanaka,et al.  Reduced SnO2 surfaces by first-principles calculations , 2004 .

[34]  M. V. Nazarov,et al.  Cathodoluminescence study of SnO2 powders aimed for gas sensor applications , 2006 .

[35]  M. Takano,et al.  Blue-light emission at room temperature from Ar+-irradiated SrTiO3 , 2005 .

[36]  P. Maddalena,et al.  On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO2 adsorption , 2008 .

[37]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .