Multiplication, Division and Shift Instructions in Parallel Random Access Machines

Abstract We prove that polynomial time on a parallel random access machine (PRAM) with unit-cost multiplication and division or on a PRAM with unit-cost shifts is equivalent to polynomial space on a Turing machine (PSPACE). This extends the result that polynomial time on a basic PRAM is equivalent to PSPACE to hold when the PRAM is allowed multiplication or division or unrestricted shifts. It also extends to the PRAM the results that polynomial time on a random access machine (RAM) with multiplication is equivalent to PSPACE and that polynomial time on a RAM with shifts (that is, a vector machine) is equivalent to PSPACE. We obtain simulations of uniform circuits by RAMs with enhanced instruction sets and use the enhanced RAMs to simulate PRAMs with enhanced instruction sets.

[1]  Torben Hagerup On Saving Space in Parallel Computation (Note) , 1988, Inf. Process. Lett..

[2]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1986, SIAM J. Comput..

[3]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[4]  Janos Simon Division in Idealized Unit Cost RAMS , 1981, J. Comput. Syst. Sci..

[5]  Stephen A. Cook,et al.  Time-bounded random access machines , 1972, J. Comput. Syst. Sci..

[6]  Leslie M. Goldschlager,et al.  A universal interconnection pattern for parallel computers , 1982, JACM.

[7]  Vladimir Yu. Sazonov,et al.  On Feasible Numbers , 1994, LCC.

[8]  Jerry Lee Trahan Instruction Sets for Parallel Random Access Machines , 1988 .

[9]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[10]  Juris Hartmanis,et al.  On the Power of Multiplication in Random Access Machines , 1974, SWAT.

[11]  John H. Reif,et al.  Logarithmic depth circuits for algebraic functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[12]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[13]  Uzi Vishkin,et al.  Simulation of Parallel Random Access Machines by Circuits , 1984, SIAM J. Comput..

[14]  Uzi Vishkin,et al.  Implementation of Simultaneous Memory Address Access in Models That Forbid It , 1983, J. Algorithms.

[15]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[16]  Richard J. Lipton,et al.  Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..

[17]  Larry J. Stockmeyer,et al.  A characterization of the power of vector machines , 1974, STOC '74.

[18]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[19]  Jerry L. Trahan,et al.  The power of parallel random access machines with augmented instruction sets , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[20]  Rüdiger Reischuk Simultaneous WRITES of parallel random access machines do not help to compute simple arithmetic functions , 1987, JACM.

[21]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[22]  Natarajan Shankar,et al.  Efficient Parallel Circuits and Algorithms for Division , 1988, Inf. Process. Lett..

[23]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[24]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[25]  Michael J. Quinn,et al.  Designing Efficient Algorithms for Parallel Computers , 1987 .