CTH02-4: When Does One Redundant Parity-Check Equation Matter?

We analyze the effect of redundant parity-check equations on the error-floor performance of low-density parity- check (LDPC) codes used over the additive white Gaussian noise (AWGN) channel. Our findings show that a large number of iterative decoding errors in the [2640,1320] Margulis code, confined to point trapping sets in the standard Tanner graph, can be corrected if only one redundant parity-check equation is added to the decoder's matrix. We also derive an analytic expression relating the number of rows in the parity-check matrix of a code and the parameters of trapping sets in the code's graph.

[1]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[2]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[3]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[4]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[5]  P. Vontobel,et al.  Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.

[6]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[7]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[8]  Douglas R. Stinson,et al.  The Lovász Local Lemma and Its Applications to some Combinatorial Arrays , 2004, Des. Codes Cryptogr..

[9]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[10]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.

[11]  Paul H. Siegel,et al.  Improved Upper Bounds on Stopping Redundancy , 2005, IEEE Transactions on Information Theory.

[12]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Anant P. Godbole,et al.  Partial covering arrays and a generalized Erdös-Ko-Rado property , 2005 .