ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES

We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R_⊕ 10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

[1]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[2]  Maciej Konacki,et al.  HIGH-RESOLUTION SPECTROSCOPIC FOLLOW-UP OF OGLE PLANETARY TRANSIT CANDIDATES IN THE GALACTIC BULGE: TWO POSSIBLE JUPITER-MASS PLANETS AND TWO BLENDS , 2003 .

[3]  Annie Baglin,et al.  COROT: A minisat for pionnier science, asteroseismology and planets finding , 2003 .

[4]  L. Walkowicz,et al.  PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS: THE SUN AMONG STARS—A FIRST LOOK , 2010, 1001.0414.

[5]  D. Monet,et al.  Finding Earth-size planets in the habitable zone: the Kepler Mission , 2007, Proceedings of the International Astronomical Union.

[6]  A. Prsa,et al.  PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES , 2010, 1001.0392.

[7]  G. Chabrier The Galactic Disk Mass Budget. I. Stellar Mass Function and Density , 2001 .

[8]  B. Gaudi,et al.  Predicting the Yields of Photometric Surveys for Transiting Extrasolar Planets , 2008, 0804.1150.

[9]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[10]  David Charbonneau,et al.  Rejecting Astrophysical False Positives from the TrES Transiting Planet Survey: The Example of GSC 03885–00829 , 2006 .

[11]  Jon M. Jenkins,et al.  Kepler: a space mission to detect earth-class exoplanets , 1998, Astronomical Telescopes and Instrumentation.

[12]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[13]  Howard Isaacson,et al.  MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM , 2010, 1008.4393.

[14]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[15]  K. Stanek,et al.  HATNET Variability Survey in the High Stellar Density “Kepler Field” with Millimagnitude Image Subtraction Photometry , 2004 .

[16]  R. Paul Butler,et al.  DISCOVERY OF A TRANSITING PLANET AND EIGHT ECLIPSING BINARIES IN HATNet FIELD G205 , 2009 .

[17]  Timothy M. Brown,et al.  Expected Detection and False Alarm Rates for Transiting Jovian Planets , 2003, astro-ph/0307256.

[18]  A. A. Tokovinin VizieR Online Data Catalog: Multiple star catalogue (MSC) (Tokovinin 1997-1999) , 1999 .

[19]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[20]  D. A. Caldwell,et al.  SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS , 2010, 1001.0349.

[21]  Radoslaw Poleski,et al.  THE XO PLANETARY SURVEY PROJECT: ASTROPHYSICAL FALSE POSITIVES , 2010, 1006.2139.

[22]  Sara Seager,et al.  On the Period Distribution of Close-in Extrasolar Giant Planets , 2005 .

[23]  B. Scott Gaudi On the Size Distribution of Close-In Extrasolar Giant Planets , 2005 .

[24]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[25]  R. Jayawardhana,et al.  An Adaptive Optics Search for Companions to Stars with Planets , 2001, astro-ph/0110550.

[26]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[27]  Penny D. Sackett,et al.  AN A PRIORI INVESTIGATION OF ASTROPHYSICAL FALSE POSITIVES IN GROUND-BASED TRANSITING PLANET SURVEYS , 2010, 1002.0886.

[28]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.

[29]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[30]  et al,et al.  Rate and nature of false positives in the CoRoT exoplanet search , 2009, 0908.1172.

[31]  Howard Isaacson,et al.  DISCOVERY AND ROSSITER–McLAUGHLIN EFFECT OF EXOPLANET KEPLER-8b , 2010, 1001.0416.

[32]  Berkeley,et al.  TESTING BLEND SCENARIOS FOR EXTRASOLAR TRANSITING PLANET CANDIDATES. I. OGLE-TR-33: A FALSE POSITIVE , 2004 .

[33]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[34]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[35]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[36]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[37]  W. D. Cochran,et al.  A Dedicated M Dwarf Planet Search Using The Hobby-Eberly Telescope , 2003, astro-ph/0308477.

[38]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.