A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms’ role in ecology and human health.

Sara L. Jackrel | Emily C. Gentry | Allegra T. Aron | Yasin El Abiead | Manuel Liebeke | K. Gindro | W. Gerwick | K. Forchhammer | J. S. Sinninghe Damsté | R. Knight | G. Koellensperger | J. Wolfender | N. Bandeira | R. Cichewicz | Kou-San Ju | A. Patterson | H. Mohimani | Neha Garg | D. Petráš | Nicole E. Avalon | N. Lopes | G. Tamayo-Castillo | C. Molina-Santiago | P. Rezende-Teixeira | P. Jimenez | L. Costa-Lotufo | H. M. Roager | Mingxun Wang | Sammy Pontrelli | I. Dubery | F. Tugizimana | Matthew F. Traxler | B. Siewert | G. Barbera | C. licona-cassani | G. D. da Silva | M. F. Laursen | K. McPhail | U. Peintner | M. Brönstrup | Raimo Franke | N. Madala | N. Bale | K. Broders | Evelyn Rampler | Harald Schoeny | Felina Hildebrand | B. Pullman | F. Hammerle | P. Chaverri | Hiutung Chu | Carlismari O. Grundmann | Lisa Panzenboeck | H. Koolen | B. Wagner | S. L. La Rosa | P. Pope | J. Clement | K. Kang | A. Bauermeister | Diego Romero | Rita de Cassia Pessotti | E. Escudero-Leyva | Jerry Cui | Eve T Roxborough | Andreas Sichert | L. Quirós-Guerrero | Mariana Silva dos Santos | Adriano Rutz | R. Gregor | Robin Schmid | Nicole Aiosa | Patric Bourceau | Bipin Rimal | C.-Y. Hsu | Arturo Vera-Ponce de León | M. Meehan | P. Dorrestein | J. Zemlin | P. W. P. Gomes | Katharina Hohenwallner | E. A. Moreira | L. P. S. de Carvalho | Pierre-Marie Allard | A. Caraballo-Rodríguez | D. Silva | Daniel McDonald | Adriana Vasquez Ayala | Marvic Carrillo Terrazas | Renee E. Oles | L. Rodríguez-Orduña | S. Ding | Christopher M. Rath | Simone Zuffa | E. O’Neill | Josep Massana-Codina | L. Nephali | A. I. Pérez-Lorente | Ekaterina Buzun | Jiaqi Zhao | Mirte C. M. Kuijpers | Daniel Alvarado-Villalobos | Alexandre Jean Bory | Juliette Joubert | Henna Gadhavi | Jane Odoi | Xu Guan | Fernanda Motta Ribeiro Silva | Sidnee E. Ober-Singleton

[1]  Philipp E. Geyer,et al.  Profiling the human intestinal environment under physiological conditions , 2023, Nature.

[2]  D. Shalon,et al.  Human metabolome variation along the upper intestinal tract , 2023, Nature Metabolism.

[3]  Ajay S. Gulati,et al.  Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut , 2023, Nature Microbiology.

[4]  M. Serrano,et al.  Hallmarks of aging: An expanding universe , 2022, Cell.

[5]  J. V. van Meurs,et al.  Gut microbiome-wide association study of depressive symptoms , 2022, Nature Communications.

[6]  S. Swanson,et al.  P-Massive: A Real-Time Search Engine for a Multi-Terabyte Mass Spectrometry Database , 2022, SC22: International Conference for High Performance Computing, Networking, Storage and Analysis.

[7]  D. Wishart,et al.  MiMeDB: the Human Microbial Metabolome Database , 2022, Nucleic Acids Res..

[8]  M. Kleiner,et al.  Dietary protein and the intestinal microbiota: An understudied relationship , 2022, iScience.

[9]  Tom O. Delmont,et al.  Biosynthetic potential of the global ocean microbiome , 2022, Nature.

[10]  C. Steinbeck,et al.  The LOTUS initiative for open knowledge management in natural products research , 2022, eLife.

[11]  Roger G. Linington,et al.  The Natural Products Atlas 2.0: a database of microbially-derived natural products , 2021, Nucleic Acids Res..

[12]  Kun Lu,et al.  High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice , 2021, Nature Communications.

[13]  Emily C. Gentry,et al.  High-confidence structural annotation of metabolites absent from spectral libraries , 2021, Nature Biotechnology.

[14]  P. Dorrestein,et al.  Mass spectrometry-based metabolomics in microbiome investigations , 2021, Nature reviews. Microbiology.

[15]  R. Kerby,et al.  Dominant Bacterial Phyla from the Human Gut Show Widespread Ability To Transform and Conjugate Bile Acids , 2021, mSystems.

[16]  Emily C. Gentry,et al.  A Synthesis-Based Reverse Metabolomics Approach for the Discovery of Chemical Structures from Humans and Animals. , 2021 .

[17]  William W. Van Treuren,et al.  A metabolomics pipeline for the mechanistic interrogation of the gut microbiome , 2021, Nature.

[18]  Wout Bittremieux,et al.  Universal Spectrum Identifier for mass spectra , 2020, Nature Methods.

[19]  J. Doré,et al.  Introduction to host microbiome symbiosis in health and disease , 2020, Mucosal Immunology.

[20]  Juho Rousu,et al.  Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra , 2020, Nature Biotechnology.

[21]  S. Mazmanian,et al.  The gut microbiota–brain axis in behaviour and brain disorders , 2020, Nature Reviews Microbiology.

[22]  O. Pedersen,et al.  Gut microbiota in human metabolic health and disease , 2020, Nature Reviews Microbiology.

[23]  Justin J. J. van der Hooft,et al.  ReDU: a framework to find and reanalyze public mass spectrometry data , 2020, Nature Methods.

[24]  Julie C. Lumeng,et al.  Global chemical effects of the microbiome include new bile-acid conjugations , 2020, Nature.

[25]  Justin J. J. van der Hooft,et al.  Mass spectrometry searches using MASST , 2020, Nature Biotechnology.

[26]  Lu Sun,et al.  NCBI Taxonomy: a comprehensive update on curation, resources and tools , 2020, Database J. Biol. Databases Curation.

[27]  J. Jansson,et al.  Soil microbiomes and climate change , 2019, Nature Reviews Microbiology.

[28]  Jacob M. Luber,et al.  The Landscape of Genetic Content in the Gut and Oral Human Microbiome. , 2019, Cell host & microbe.

[29]  William A. Walters,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[30]  S. Böcker,et al.  SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information , 2019, Nature Methods.

[31]  Karsten Zengler,et al.  GABA Modulating Bacteria of the Human Gut Microbiota , 2018, Nature Microbiology.

[32]  Amir I. Mina,et al.  A selective gut bacterial bile salt hydrolase alters host metabolism , 2018, eLife.

[33]  S. Brady,et al.  Accessing Bioactive Natural Products from the Human Microbiome. , 2018, Cell host & microbe.

[34]  Rohit Loomba,et al.  Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity , 2017, Nature.

[35]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[36]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[37]  R. Ismagilov,et al.  Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis , 2015 .

[38]  Yun-Han Huang,et al.  Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist , 2015, Proceedings of the National Academy of Sciences.

[39]  Hanspeter Pfister,et al.  UpSet: Visualization of Intersecting Sets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[40]  J. Segre,et al.  The human microbiome: our second genome. , 2012, Annual review of genomics and human genetics.

[41]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[42]  P. Dorrestein,et al.  Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. , 2011, Angewandte Chemie.

[43]  K. S. Lam,et al.  Discovery and development of the anticancer agent salinosporamide A (NPI-0052). , 2009, Bioorganic & medicinal chemistry.

[44]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[45]  H. Shibuya,et al.  Bioproduction of bile acids and the glycine conjugates by Penicillium fungus , 2007, Journal of Natural Medicines.

[46]  C. Lee,et al.  Biosynthesis of bile acids in a variety of marine bacterial taxa. , 2007, Journal of microbiology and biotechnology.

[47]  M. Lawlor,et al.  Yersiniabactin Is a Virulence Factor for Klebsiella pneumoniae during Pulmonary Infection , 2007, Infection and Immunity.

[48]  S. Maneerat,et al.  Bile acids are new products of a marine bacterium, Myroides sp. strain SM1 , 2005, Applied Microbiology and Biotechnology.

[49]  A. Endo The origin of the statins , 2004 .

[50]  E. Denamur,et al.  Yersinia High-Pathogenicity Island Contributes to Virulence in Escherichia coli Causing Extraintestinal Infections , 2002, Infection and Immunity.

[51]  R. Pukall,et al.  Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tü 6075. I. Taxonomy, fermentation, isolation and biological activities. , 2002, The Journal of antibiotics.

[52]  G. Jung,et al.  Structure elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains , 1995 .

[53]  R Monaghan,et al.  Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Eduard Szöcs,et al.  taxize: taxonomic search and retrieval in R , 2013, F1000Research.

[55]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[56]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .