Performance prediction of Savonius Wind Turbine using adaptive neuro-based fuzzy inference system (ANFIS)

[1]  Shahaboddin Shamshirband,et al.  Adaptive neuro-fuzzy estimation of building augmentation of wind turbine power , 2014 .

[2]  A T Sayers,et al.  Blade Configuration Optimization and Performance Characteristics of a Simple Savonius Rotor , 1985 .

[3]  G. Aydin Forecasting Natural Gas Production Using Various Regression Models , 2015 .

[4]  Pejman Tahmasebi,et al.  A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation , 2012, Comput. Geosci..

[5]  Hadi Sutanto,et al.  An Experimental Study on the Performance of Savonius Wind Turbines Related With The Number Of Blades , 2015 .

[6]  Ali Barati-Harooni,et al.  Implementing a PSO-ANFIS model for prediction of viscosity of mixed oils , 2017 .

[7]  B. F. Blackwell,et al.  Wind tunnel performance data for two- and three-bucket Savonius rotors , 1978 .

[8]  N. Anantharaman,et al.  Hydrodynamic studies in fluidized bed with internals and modeling using ANN and ANFIS , 2017 .

[9]  V. J. Modi,et al.  On the Performance of the Savonius Wind Turbine , 1989 .

[10]  T. Warren Liao,et al.  Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network , 2016 .

[11]  Bahman Najafi,et al.  Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC) , 2018, Resources, Conservation and Recycling.

[12]  J. Sargolzaei,et al.  Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque , 2009, Simul. Model. Pract. Theory.