Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection

The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required.

[1]  V. Kravets,et al.  Sensitivity of collective plasmon modes of gold nanoresonators to local environment. , 2010, Optics letters.

[2]  Síle Nic Chormaic,et al.  Optical trapping and manipulation of micrometer and submicrometer particles , 2015 .

[3]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[4]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[6]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[7]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[9]  Reuven Gordon,et al.  Directivity enhanced Raman spectroscopy using nanoantennas. , 2011, Nano letters.

[10]  Juan P. Torres,et al.  Twisted photons: new classical and quantum applications , 2005, SPIE Optics + Optoelectronics.

[11]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[13]  Romain Quidant,et al.  Surface‐plasmon‐based optical manipulation , 2008 .

[14]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[15]  P. Nordlander,et al.  Shedding light on dark plasmons in gold nanorings , 2008 .

[16]  H. Atwater,et al.  Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. , 2009, Nano letters.

[17]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[18]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[19]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[20]  P. Nordlander,et al.  Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. , 2015, ACS nano.

[21]  S. L. Teo,et al.  Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers. , 2011, Nano letters.

[22]  Luca Dal Negro,et al.  Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. , 2009, Nano letters.

[23]  Mark R. Dennis,et al.  Isolated optical vortex knots , 2010 .

[24]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2014, Nature nanotechnology.

[25]  Niels Verellen,et al.  Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. , 2010, ACS nano.

[26]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[27]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[28]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[29]  Harald Giessen,et al.  Optical resonances of bowtie slot antennas and their geometry and material dependence. , 2008, Optics express.

[30]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[31]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[32]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[33]  Michael I. Haftel,et al.  Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons , 2006 .

[34]  M. Sergides,et al.  Characterization of periodic plasmonic nanoring devices for nanomanipulation , 2015, SPIE NanoScience + Engineering.

[35]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[36]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[37]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[38]  R J Pollard,et al.  Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. , 2013, Optics express.

[39]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[40]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[41]  Chia-Yang Tsai,et al.  Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. , 2012, Nano letters.

[42]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[43]  Fadi Issam Baida,et al.  Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays , 2003 .

[44]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[45]  G. Si,et al.  Light‐Driven Plasmonic Color Filters by Overlaying Photoresponsive Liquid Crystals on Gold Annular Aperture Arrays , 2012, Advanced materials.

[46]  Sergiy Patskovsky,et al.  Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. , 2009, Optics express.

[47]  S. Patskovsky,et al.  Intensity based surface plasmon resonance sensor using a nanohole rectangular array. , 2011, Optics express.

[48]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[49]  D. Chang,et al.  Self-induced back-action optical trapping in nanophotonic systems , 2015, 1505.02709.

[50]  Thomas E Darcie,et al.  Tuning plasmonic resonances of an annular aperture in metal plate. , 2011, Optics express.

[51]  V. G. Truong,et al.  Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. , 2016, Optics express.

[52]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.