Global existence of small analytic solutions to schrodinger equations with quadratic nonlinearity
暂无分享,去创建一个
[1] S. Spagnolo,et al. Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .
[2] Chihara Hiroyuki. Global extstence of small solutions to semiliner schrödinger equations , 1996 .
[3] Sergiu Klainerman,et al. Uniform decay estimates and the lorentz invariance of the classical wave equation , 1985 .
[4] Nakao Hayashi,et al. Almost global existence of small solutions to quadratic nonlinear Schrödinger equations in three space dimensions , 1995 .
[5] Jalal Shatah,et al. Global existence of small solutions to nonlinear evolution equations , 1982 .
[6] S. Cohn,et al. Resonance and long time existence for the quadratic semilinear schrödinger equation , 1992 .
[7] Hiroaki Aikawa,et al. Isometrical identities for the Bergman and the Szegö spaces on a sector , 1991 .
[8] S. Doi. On the Cauchy problem for Schrödinger type equations and the regularity of the solutions , 1994 .
[9] N. Hayashi,et al. Regularity in Time of Solutions to Nonlinear Schrödinger Equations , 1995 .
[10] Gustavo Ponce,et al. Global, small amplitude solutions to nonlinear evolution equations , 1983 .
[11] Luis Vega,et al. Small solutions to nonlinear Schrödinger equations , 1993 .
[12] H. Chihara. The initial value problem for cubic semilinear Schro¨dinger equations , 1996 .
[13] Nakao Hayashi,et al. Global existence of small solutions to quadratic nonlinear schrödinger equations , 1993 .
[14] Hiroaki Aikawa. Infinite order sobolev spaces, analytic continuation and polynomial expansions , 1992 .
[15] T. Cazenave. Equations de Schrödinger non linéaires en dimension deux , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[16] H. Chihara. Global existence of small solutions to semilinear Schro¨dinger equations with gauge invariance , 1995 .