Global existence of small analytic solutions to schrodinger equations with quadratic nonlinearity

[1]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[2]  Chihara Hiroyuki Global extstence of small solutions to semiliner schrödinger equations , 1996 .

[3]  Sergiu Klainerman,et al.  Uniform decay estimates and the lorentz invariance of the classical wave equation , 1985 .

[4]  Nakao Hayashi,et al.  Almost global existence of small solutions to quadratic nonlinear Schrödinger equations in three space dimensions , 1995 .

[5]  Jalal Shatah,et al.  Global existence of small solutions to nonlinear evolution equations , 1982 .

[6]  S. Cohn,et al.  Resonance and long time existence for the quadratic semilinear schrödinger equation , 1992 .

[7]  Hiroaki Aikawa,et al.  Isometrical identities for the Bergman and the Szegö spaces on a sector , 1991 .

[8]  S. Doi On the Cauchy problem for Schrödinger type equations and the regularity of the solutions , 1994 .

[9]  N. Hayashi,et al.  Regularity in Time of Solutions to Nonlinear Schrödinger Equations , 1995 .

[10]  Gustavo Ponce,et al.  Global, small amplitude solutions to nonlinear evolution equations , 1983 .

[11]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[12]  H. Chihara The initial value problem for cubic semilinear Schro¨dinger equations , 1996 .

[13]  Nakao Hayashi,et al.  Global existence of small solutions to quadratic nonlinear schrödinger equations , 1993 .

[14]  Hiroaki Aikawa Infinite order sobolev spaces, analytic continuation and polynomial expansions , 1992 .

[15]  T. Cazenave Equations de Schrödinger non linéaires en dimension deux , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  H. Chihara Global existence of small solutions to semilinear Schro¨dinger equations with gauge invariance , 1995 .