Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate.

Although studies of population genetic structure are commonplace, a strong bias exists toward species from low latitudes and with relatively poor dispersal capabilities. Consequently, we used 280 amplified fragment length polymorphism bands to explore patterns of genetic differentiation among 8 populations of a high latitude broadcast-spawning marine mollusc, the Antarctic limpet Nacella concinna. Over 300 individuals were sampled along a latitudinal gradient spanning the Antarctic Peninsula from Adelaide Island to King George Island (67°-62°S), then to Signy Island (60°S) and South Georgia (54°S). Populations from the Antarctic Peninsula exhibited little genetic structure but were themselves strongly differentiated from both Signy and South Georgia. This finding was analytically highly robust and implies the presence of significant oceanographic barriers to gene flow in a species long regarded as a classic example of a widely dispersing broadcast spawner.

[1]  J. Turner,et al.  Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records , 2013 .

[2]  E. Hofmann,et al.  Water Mass Distribution and Circulation West of the Antarctic Peninsula And Including Bransfield Strait , 2013 .

[3]  Andrew Fleming,et al.  Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica , 2010 .

[4]  E. Poulin,et al.  Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. , 2010, Molecular phylogenetics and evolution.

[5]  L. Peck,et al.  Poor acclimation capacities in Antarctic marine ectotherms , 2010 .

[6]  Joseph I. Hoffman,et al.  No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes , 2010 .

[7]  L. Després,et al.  Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect , 2009, BMC Evolutionary Biology.

[8]  J. Hemmer-Hansen,et al.  Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua) , 2009, BMC Evolutionary Biology.

[9]  D. Savidge,et al.  Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects , 2009 .

[10]  M. Stephens,et al.  Inferring weak population structure with the assistance of sample group information , 2009, Molecular ecology resources.

[11]  W. Salzburger,et al.  Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons , 2009, Molecular ecology.

[12]  Hans-Otto Pörtner,et al.  Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[13]  L. Peck,et al.  Animal temperature limits and ecological relevance: effects of size, activity and rates of change , 2009 .

[14]  W. Amos,et al.  Pinniped phylogenetic relationships inferred using AFLP markers , 2009, Heredity.

[15]  K. Halanych,et al.  Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia) , 2009, Molecular ecology.

[16]  K. Halanych,et al.  Open‐ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae) , 2008, Molecular ecology.

[17]  Lloyd S. Peck,et al.  Vulnerability of Antarctic shelf biodiversity to predicted regional warming , 2008 .

[18]  O. Gaggiotti,et al.  A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective , 2008, Genetics.

[19]  S. Campana,et al.  Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history , 2008, Proceedings of the Royal Society B: Biological Sciences.

[20]  K. Halanych,et al.  Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgson 1902 , 2008 .

[21]  R. Sahade,et al.  Genetic differentiation between morphotypes in the Antarctic limpet Nacella concinna as revealed by inter-simple sequence repeat markers , 2008 .

[22]  K. Halanych,et al.  Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. , 2008, The Journal of heredity.

[23]  N. Lipzig,et al.  A first description of the Antarctic Peninsula Coastal Current , 2008 .

[24]  S. Manel,et al.  Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists , 2007, Molecular ecology.

[25]  R. Toonen,et al.  Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories , 2007, Molecular ecology.

[26]  K. Halanych,et al.  Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica , 2007 .

[27]  D. Barnes,et al.  Biodiversity and biogeography of southern temperate and polar bryozoans , 2007 .

[28]  E. Murphy,et al.  Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport , 2007 .

[29]  Heidi M. Meudt,et al.  Almost forgotten or latest practice? AFLP applications, analyses and advances. , 2007, Trends in plant science.

[30]  P. Tyler,et al.  Very slow development in two Antarctic bivalve molluscs, the infaunal clam Laternula elliptica and the scallop Adamussium colbecki , 2007 .

[31]  K. Linse,et al.  Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae) , 2007, Polar Biology.

[32]  F. Leese,et al.  The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos , 2007, Polar Biology.

[33]  L. Peck,et al.  Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years , 2006 .

[34]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[35]  L. Peck Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change , 2005, Antarctic Science.

[36]  S. Bensch,et al.  Ten years of AFLP in ecology and evolution: why so few animals? , 2005, Molecular ecology.

[37]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[38]  W. Amos,et al.  Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion , 2004, Molecular ecology.

[39]  P. Taberlet,et al.  How to track and assess genotyping errors in population genetics studies , 2004, Molecular ecology.

[40]  P. Shaw,et al.  Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep‐water troughs as barriers to genetic exchange , 2004, Molecular ecology.

[41]  D. Balding,et al.  Identifying adaptive genetic divergence among populations from genome scans , 2004, Molecular ecology.

[42]  P. Taberlet,et al.  The power and promise of population genomics: from genotyping to genome typing , 2003, Nature Reviews Genetics.

[43]  A. Clarke,et al.  Antarctic marine benthic diversity , 2003 .

[44]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[45]  R. Butlin,et al.  Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers , 2001 .

[46]  F. Allendorf,et al.  HETEROZYGOSITY‐FITNESS CORRELATIONS IN RAINBOW TROUT: EFFECTS OF ALLOZYME LOCI OR ASSOCIATIVE OVERDOMINANCE? , 2001, Evolution; international journal of organic evolution.

[47]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[48]  N. Waser A Primer of Population Genetics (3rd edn) , 2000, Heredity.

[49]  A. Clarke Evolution in the cold , 2000, Antarctic Science.

[50]  K. Leonard,et al.  Contamination, error, and nonspecific molecular tools. , 2000, Phytopathology.

[51]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[52]  U. Mueller,et al.  AFLP genotyping and fingerprinting. , 1999, Trends in ecology & evolution.

[53]  L. Peck,et al.  Temperature and Embryonic Development in Relation to Spawning and Field Occurrence of Larvae of Three Antarctic Echinoderms. , 1998, The Biological bulletin.

[54]  D. Stanwell-Smith,et al.  The Timing of reproduction in the Antarctic limpet Nacella concinna (srebel, 1908) (Patellidae) at Signy Island, in relation to environmental variables , 1998 .

[55]  P. Ajmone-Marsan,et al.  AFLP markers for DNA fingerprinting in cattle. , 1997, Animal genetics.

[56]  M. Beaumont,et al.  Evaluating loci for use in the genetic analysis of population structure , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  P. J. Maughan,et al.  Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis , 1996, Theoretical and Applied Genetics.

[58]  T. Brey,et al.  Do Antarctic benthic invertebrates show an extended level of eurybathy? , 1996, Antarctic Science.

[59]  L. Peck,et al.  Pelagic larval development in the brooding Antarctic brachiopod Liothyrella uva , 1994 .

[60]  Montgomery Slatkin,et al.  ISOLATION BY DISTANCE IN EQUILIBRIUM AND NON‐EQUILIBRIUM POPULATIONS , 1993, Evolution; international journal of organic evolution.

[61]  A. Beaumont,et al.  MORPHOLOGICAL AND GENETIC VARIATION IN THE ANTARCTIC LIMPET NACELLA CONCINNA (STREBEL, 1908) , 1991 .

[62]  J. Crame Origins and evolution of the Antarctic Biota , 1987 .

[63]  H. Goodman,et al.  Specificity of substrate recognition by the EcoRI restriction endonuclease. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. G. Adams,et al.  Aspects of Tethyan Biogeography. , 1968 .

[65]  S WRIGHT,et al.  Genetical Structure of Populations , 1950, British medical journal.

[66]  L. Peck Ecophysiology of Antarctic marine ectotherms: limits to life , 2001, Polar Biology.

[67]  E. Hofmann,et al.  Foundations for Ecological Research West of the Antarctic Peninsula , 1996 .

[68]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[69]  A. Clarke,et al.  The origin of the Southern Ocean marine fauna , 1989, Geological Society, London, Special Publications.

[70]  A. Clarke Temperature, latitude and reproductive effort , 1987 .

[71]  G. Deacon,et al.  The Antarctic Circumpolar Ocean , 1985 .

[72]  O. Kinne Book Review: The State of the Environment , 1985 .

[73]  D. Hartl,et al.  A primer of population genetics , 1981 .

[74]  A. Powell Antarctic and Subantarctic Mollusca. Pelecypoda and Gastropoda , 1951 .

[75]  A. N. Kolmogorov,et al.  Theory of Probability , 1929, Nature.

[76]  M Cassandro,et al.  AFLP TM markers for DNA fingerprinting in cattle , 2022 .