Cell signalling in induction and anterior-posterior patterning of the vertebrate central nervous system

[1]  D. Melton,et al.  A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos , 1992, Nature.

[2]  J. Rossant,et al.  Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. , 1992, Development.

[3]  G. Eichele,et al.  Evidence that Hensen's node is a site of retinoic acid synthesis , 1992, Nature.

[4]  A. R. I. Altaba Planar and vertical signals in the induction and patterning of the Xenopus nervous system , 1992 .

[5]  M. Wassef,et al.  Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. , 1992, Development.

[6]  J. Gerhart,et al.  Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. , 1992, Science.

[7]  P. Kushner,et al.  Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. , 1992, Development.

[8]  M. Saha,et al.  A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus , 1992, Neuron.

[9]  A. Joyner,et al.  The midbrain-hindbrain phenotype of Wnt-1− Wnt-1− mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum , 1992, Cell.

[10]  Carmen R. Domingo,et al.  Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. , 1992 .

[11]  M. Jamrich,et al.  A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. , 1992, Genes & development.

[12]  R. Moon,et al.  Protein kinase C isozymes have distinct roles in neural induction and competence in Xenopus , 1992, Cell.

[13]  J. Slack,et al.  Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. , 1992, Development.

[14]  T. Jessell,et al.  Diffusible factors in vertebrate embryonic induction , 1992, Cell.

[15]  R. Krumlauf,et al.  Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. , 1991, Development.

[16]  H. Nakamura,et al.  Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity. , 1991, Development.

[17]  N. Holder,et al.  Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. , 1991, Development.

[18]  C. A. Gardner,et al.  The cellular environment controls the expression of engrailed-like protein in the cranial neuroepithelium of quail-chick chimeric embryos. , 1991, Development.

[19]  R. Grainger,et al.  Homeogenetic neural induction in Xenopus. , 1991, Developmental Biology.

[20]  C. Sharpe Retinoic acid can mimic endogenous signals involved in transformation of the xenopus nervous system , 1991, Neuron.

[21]  T. Jessell,et al.  Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. , 1991, Development.

[22]  M. Wassef,et al.  Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en , 1991, Neuron.

[23]  T. Jessell,et al.  Control of cell pattern in the developing nervous system: Polarizing activity of the floor plate and notochord , 1991, Cell.

[24]  S. Martinez,et al.  Pluripotentiality of the 2-day-old avian germinative neuroepithelium. , 1990, Developmental biology.

[25]  A. R. I. Altaba Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm , 1990 .

[26]  J. Slack,et al.  Clonal analysis of mesoderm induction in Xenopus laevis. , 1989, Developmental biology.