Thermal and magnetic quantum discord in Heisenberg models

We investigate how quantum correlations [quantum discord (QD)] of a two-qubit one-dimensional $\mathit{XYZ}$ Heisenberg chain in thermal equilibrium depend on the temperature $T$ of the bath and also on an external magnetic field $B$. We show that the behavior of thermal QD differs in many unexpected ways from thermal entanglement. For example, we show situations where QD increases with $T$ when entanglement decreases, cases where QD increases with $T$ even in regions with zero entanglement, and that QD signals a quantum phase transition even at finite $T$. We also show that by properly tuning $B$ or the interaction between the qubits we get nonzero QD for any $T$ and we present an effect not seen for entanglement, the ``regrowth'' of thermal QD.

[1]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[2]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[3]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[4]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[7]  Characterization of a quasi-one-dimensional spin-1/2 magnet which is gapless and paramagnetic for g μ B H ≲ J and k B T ≪ J , 1998, cond-mat/9809068.

[8]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[9]  S. Bose,et al.  Natural thermal and magnetic entanglement in the 1D Heisenberg model. , 2000, Physical review letters.

[10]  A. Starace,et al.  Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. , 2002, Physical review letters.

[11]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[12]  THERMAL ENTANGLEMENT IN THE TWO-QUBIT HEISENBERG XYZ MODEL , 2003, quant-ph/0311185.

[13]  Wojciech Hubert Zurek Quantum discord and Maxwell's demons , 2003 .

[14]  G. Rigolin,et al.  Effects of the interplay between interaction and disorder in bipartite entanglement , 2004, quant-ph/0408062.

[15]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[16]  G. Rigolin,et al.  Quantum channels in random spin chains , 2006, quant-ph/0608220.

[17]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[18]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[19]  G. Rigolin,et al.  Symmetry-breaking effects upon bipartite and multipartite entanglement in the XY model , 2007, 0709.1956.

[20]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[21]  S. Luo Quantum discord for two-qubit systems , 2008 .

[22]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[23]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[24]  Eric Lutz,et al.  Energetics of quantum correlations , 2008, 0803.4067.

[25]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[26]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.