Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling
暂无分享,去创建一个
[1] R. G. Seidensticker,et al. The basis of automatic diameter control utilizing ``bright ring'' meniscus reflections , 1975 .
[2] Jyh-Chen Chen,et al. Numerical computation of heat flow, fluid flow and interface shapes in the float zone of lithium niobate during a melting process , 1996 .
[3] W. E. Langlois. Digital simulation of Czochralski bulk flow in microgravity , 1980 .
[4] D. Hurle. Control of diameter in Czochralski and related crystal growth techniques , 1977 .
[5] Xiumei Chen,et al. Density and surface tension of molten calcium fluoride , 2002 .
[6] A. S. Jordan. An evaluation of the thermal and elastic constants affecting GaAs crystal growth , 1980 .
[7] N. Zabaras,et al. Inverse design of directional solidification processes in the presence of a strong external magnetic field , 2001 .
[8] J. Derby,et al. Some effects of crystal rotation on large-scale Czochralski oxide growth: analysis via a hydrodynamic thermal-capillary model , 1991 .
[9] Robert A. Brown,et al. Point Defect Dynamics and the Oxidation‐Induced Stacking‐Fault Ring in Czochralski‐Grown Silicon Crystals , 1998 .
[10] J. Derby,et al. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .
[11] Gene F. Franklin,et al. Feedback Control of Dynamic Systems , 1986 .
[12] W. Shyy,et al. Numerical simulation of CdTe vertical Bridgman growth , 1997 .
[13] G. C. Joyce,et al. The dynamics of czochralski growth , 1990 .
[14] J. Martín,et al. Low Temperature Thermal Conductivity of Zinc Oxide , 1973, May 16.
[15] A. Weiss. K.-H. Hellwege, A. M. Hellwege (Eds.): Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gruppe III, Band 16, Ferroelektrika und verwandte Substanzen, Teilband b: T. Mitsui, E. Nakamura, K. Gesi, T. Ikeda, Y. M , 1982 .
[16] G. Stephanopoulos,et al. Dynamics and control of the Czochralski process: I. Modelling and dynamic characterization , 1987 .
[17] A. S. Jordan. Some thermal and mechanical properties of InP essential to crystal growth modeling , 1985 .
[18] H. Kopetsch. Numerical simulation of the interface inversion in Czochralski growth of oxide crystals , 1990 .
[19] G. W. Green,et al. Automatic control of Czochralski crystal growth , 1972 .
[20] A. S. Jordan. Estimated thermal diffusivity, Prandtl number and Grashof number of molten GaAs, InP, and GaSb , 1985 .
[21] G. Varlamov,et al. Thermophysical and optical properties of fluoride crystals and melts , 1989 .
[22] George Williams,et al. Heat transfer in silicon Czochralski crystal growth , 1983 .
[23] G. C. Joyce,et al. The weighing method of automatic Czochralski crystal growth: II. Control equipment , 1977 .
[24] Jan Winkler,et al. Nonlinear model-based control of the Czochralski process II: Reconstruction of crystal radius and growth rate from the weighing signal , 2010 .
[25] E. Billig. Growth of monocrystals of germanium from an undercooled melt , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[26] V. V. Voronkov,et al. The mechanism of swirl defects formation in silicon , 1982 .
[27] Andrea Virzi,et al. Computer modelling of heat transfer in Czochralski silicon crystal growth , 1991 .
[28] Jan Winkler,et al. Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design , 2010 .
[29] Jeffrey J. Derby,et al. A finite element method for analysis of fluid flow, heat transfer and free interfaces in Czochralski crystal growth , 1989 .
[30] P. Rudolph,et al. Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz) , 2001 .
[31] Y. Hayakawa,et al. Experimental and numerical investigations on dissolution and recrystallization processes of GaSb/InSb/GaSb under microgravity and terrestrial conditions , 2000 .
[32] R. Roy,et al. New High-Pressure Polymorph of Zinc Oxide , 1962, Science.
[33] J. Derby,et al. Heat transfer and interface inversion during the Czochralski growth of yttrium aluminum garnet and gadolinium gallium garnet , 1994 .
[34] G. C. Joyce,et al. The weighing method of automatic Czochralski crystal growth: I. Basic theory , 1977 .
[35] V. N. Kurlov,et al. Servo-controlled crystal growth by the Czochralski method estimating the state vector of the controlled object , 1992 .
[36] T. Tsukada,et al. Global analysis of heat transfer in CZ crystal growth of oxide , 1994 .