Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling

Abstract This contribution continues an article series [1] , [2] about the nonlinear model-based control of the Czochralski crystal growth process. The key idea of the presented approach is to use a sophisticated combination of nonlinear model-based and conventional (linear) PI controllers for tracking of both, crystal radius and growth rate. Using heater power and pulling speed as manipulated variables several controller structures are possible. The present part tries to systematize the properties of the materials to be grown in order to get unambiguous decision criteria for a most profitable choice of the controller structure. For this purpose a material specific constant M called interface mobility and a more process specific constant S called system response number are introduced. While the first one summarizes important material properties like thermal conductivity and latent heat the latter one characterizes the process by evaluating the average axial thermal gradients at the phase boundary and the actual growth rate at which the crystal is grown. Furthermore these characteristic numbers are useful for establishing a scheduling strategy for the PI controller parameters in order to improve the controller performance. Finally, both numbers give a better understanding of the general thermal system dynamics of the Czochralski technique.

[1]  R. G. Seidensticker,et al.  The basis of automatic diameter control utilizing ``bright ring'' meniscus reflections , 1975 .

[2]  Jyh-Chen Chen,et al.  Numerical computation of heat flow, fluid flow and interface shapes in the float zone of lithium niobate during a melting process , 1996 .

[3]  W. E. Langlois Digital simulation of Czochralski bulk flow in microgravity , 1980 .

[4]  D. Hurle Control of diameter in Czochralski and related crystal growth techniques , 1977 .

[5]  Xiumei Chen,et al.  Density and surface tension of molten calcium fluoride , 2002 .

[6]  A. S. Jordan An evaluation of the thermal and elastic constants affecting GaAs crystal growth , 1980 .

[7]  N. Zabaras,et al.  Inverse design of directional solidification processes in the presence of a strong external magnetic field , 2001 .

[8]  J. Derby,et al.  Some effects of crystal rotation on large-scale Czochralski oxide growth: analysis via a hydrodynamic thermal-capillary model , 1991 .

[9]  Robert A. Brown,et al.  Point Defect Dynamics and the Oxidation‐Induced Stacking‐Fault Ring in Czochralski‐Grown Silicon Crystals , 1998 .

[10]  J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .

[11]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[12]  W. Shyy,et al.  Numerical simulation of CdTe vertical Bridgman growth , 1997 .

[13]  G. C. Joyce,et al.  The dynamics of czochralski growth , 1990 .

[14]  J. Martín,et al.  Low Temperature Thermal Conductivity of Zinc Oxide , 1973, May 16.

[15]  A. Weiss K.-H. Hellwege, A. M. Hellwege (Eds.): Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gruppe III, Band 16, Ferroelektrika und verwandte Substanzen, Teilband b: T. Mitsui, E. Nakamura, K. Gesi, T. Ikeda, Y. M , 1982 .

[16]  G. Stephanopoulos,et al.  Dynamics and control of the Czochralski process: I. Modelling and dynamic characterization , 1987 .

[17]  A. S. Jordan Some thermal and mechanical properties of InP essential to crystal growth modeling , 1985 .

[18]  H. Kopetsch Numerical simulation of the interface inversion in Czochralski growth of oxide crystals , 1990 .

[19]  G. W. Green,et al.  Automatic control of Czochralski crystal growth , 1972 .

[20]  A. S. Jordan Estimated thermal diffusivity, Prandtl number and Grashof number of molten GaAs, InP, and GaSb , 1985 .

[21]  G. Varlamov,et al.  Thermophysical and optical properties of fluoride crystals and melts , 1989 .

[22]  George Williams,et al.  Heat transfer in silicon Czochralski crystal growth , 1983 .

[23]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: II. Control equipment , 1977 .

[24]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process II: Reconstruction of crystal radius and growth rate from the weighing signal , 2010 .

[25]  E. Billig Growth of monocrystals of germanium from an undercooled melt , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  V. V. Voronkov,et al.  The mechanism of swirl defects formation in silicon , 1982 .

[27]  Andrea Virzi,et al.  Computer modelling of heat transfer in Czochralski silicon crystal growth , 1991 .

[28]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design , 2010 .

[29]  Jeffrey J. Derby,et al.  A finite element method for analysis of fluid flow, heat transfer and free interfaces in Czochralski crystal growth , 1989 .

[30]  P. Rudolph,et al.  Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz) , 2001 .

[31]  Y. Hayakawa,et al.  Experimental and numerical investigations on dissolution and recrystallization processes of GaSb/InSb/GaSb under microgravity and terrestrial conditions , 2000 .

[32]  R. Roy,et al.  New High-Pressure Polymorph of Zinc Oxide , 1962, Science.

[33]  J. Derby,et al.  Heat transfer and interface inversion during the Czochralski growth of yttrium aluminum garnet and gadolinium gallium garnet , 1994 .

[34]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: I. Basic theory , 1977 .

[35]  V. N. Kurlov,et al.  Servo-controlled crystal growth by the Czochralski method estimating the state vector of the controlled object , 1992 .

[36]  T. Tsukada,et al.  Global analysis of heat transfer in CZ crystal growth of oxide , 1994 .